Trac and mod_wsgi

Imod wsgi is an Apache module for running WSGI-compatible Python applications directly on top of the Apache

webserver. The mod_wsgi adapter is written completely in C and provides very good performances.

Overview

I.Ihgtrac.wsgiscﬁpt
1. A _very basic script
2. A more elaborate script
3. Recommended trac.wsgi script
2. Mapping requests to the script
3. Configuring Authentication
1. Using Basic Authentication
2. Using Digest Authentication
3. Using LDAP Authentication
4. Using SSPI Authentication
5. Using Apache authentication with the Account Manager plugin's [.ogin form
6. Example: Apache/mod wsgi with Basic Authentication, Trac being at the root of a virtual host
4. Troubleshooting
1. Use a recent version
2. Getting Trac to work nicely with SSPI and 'Require Group'
3. Trac with PostgreSQL

4. Other resources

The trac.wsgi script

Trac can be run on top of mod_wsgi with the help of the following application script, which is just a Python file,

though usually saved with a .wsgi extension).

A very basic script

In its simplest form, the script could be:

import os

os.environ['TRAC_ENV'] = '/usr/local/trac/mysite'
os.environ['PYTHON_EGG_CACHE'] = '/usr/local/trac/mysite/eggs'

import trac.web.main

Trac and mod_wsgi 1 01/12/26

http://code.google.com/p/modwsgi/

application = trac.web.main.dispatch_request

The TrRac_gNV variable should naturally be the directory for your Trac environment (if you have several Trac
environments in a directory, you can also use TRAC_ENV_PARENT_DIR instead), while the PYTHON_EGG_CACHE

should be a directory where Python can temporarily extract Python eggs.
A more elaborate script

If you're using multiple .wsgi files (for example one per Trac environment) you must not use
os.environ['TRAC_ENV'] to set the path to the Trac environment. Using this method may lead to Trac delivering
the content of another Trac environment, as the variable may be filled with the path of a previously viewed Trac

environment.

To solve this problem, use the following .wsgi file instead:

import os

os.environ['PYTHON_EGG_CACHE'] = '/usr/local/trac/mysite/eggs'
import trac.web.main

def application(environ, start_response):

environ['trac.env_path'] = '/usr/local/trac/mysite'

return trac.web.main.dispatch_request (environ, start_response)

For clarity, you should give this file a .wsgi extension. You should probably put the file in its own directory, since

you will expose it to Apache.

If you have installed Trac and eggs in a path different from the standard one you should add that path by adding the

following code at the top of the wsgi script:

import site

site.addsitedir ('/usr/local/trac/lib/python2.4/site-packages"')

Change it according to the path you installed the Trac libs at.
Recommended trac.wsgi script

A somewhat robust and generic version of this file can be created using the trac-admin <env> deploy <dir>

command which automatically substitutes the required paths (see TracInstall#cgi-bin).

Trac and mod_wsgi 2 01/12/26

Mapping requests to the script

After you've done preparing your .wsgi script, add the following to your Apache configuration file (httpd.conf for

example).

WSGIScriptAlias /trac /usr/local/trac/mysite/apache/mysite.wsgi

<Directory /usr/local/trac/mysite/apache>
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>
Here, the script is in a subdirectory of the Trac environment.

If you followed the directions 2Generating the Trac cgi-bin directory, your Apache configuration file should look
like following:

WSGIScriptAlias /trac /usr/share/trac/cgi-bin/trac.wsgi

<Directory /usr/share/trac/cgi-bin>
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>

In order to let Apache run the script, access to the directory in which the script resides is opened up to all of

Apache. Additionally, the wsGIApplicationGroup directive ensures that Trac is always run in the first Python
interpreter created by mod_wsgi; this is necessary because the Subversion Python bindings, which are used by
Trac, don't always work in other sub-interpreters and may cause requests to hang or cause Apache to crash as a

result. After adding this configuration, restart Apache, and then it should work.

To test the setup of Apache, mod_wsgi and Python itself (ie. without involving Trac and dependencies), this simple

wsgi application can be used to make sure that requests gets served (use as only content in your .wsgi script):

def application(environ, start_response):
start_response ('200 OK', [('Content-type', 'text/html')])
return ['<html><body>Hello World!</body></html>"]

For more information about using the mod_wsgi specific directives, see the ?2mod wsgi's wiki and more

specifically the ?IntegrationWithTrac page.

Trac and mod_wsgi 3 01/12/26

http://trac.edgewall.org/wiki/TracInstall#cgi-bin
http://code.google.com/p/modwsgi/wiki/
http://code.google.com/p/modwsgi/wiki/IntegrationWithTrac

Configuring Authentication

We describe in the the following sections different methods for setting up authentication.

See also ?Authentication, Authorization and Access Control in the Apache guide.

Using Basic Authentication

The simplest way to enable authentication with Apache is to create a password file. Use the htpasswd program to

create the password file:

$ htpasswd -c /somewhere/trac.htpasswd admin
New password: <type password>
Re-type new password: <type password again>

Adding password for user admin
After the first user, you dont need the "-c" option anymore:

$ htpasswd /somewhere/trac.htpasswd john
New password: <type password>
Re-type new password: <type password again>

Adding password for user john
See the man page for htpasswd for full documentation.
After you've created the users, you can set their permissions using TracPermissions.

Now, you'll need to enable authentication against the password file in the Apache configuration:

<Location "/trac/login">
AuthType Basic
AuthName "Trac"
AuthUserFile /somewhere/trac.htpasswd
Require valid-user

</Location>
If you're hosting multiple projects you can use the same password file for all of them:

<LocationMatch "/trac/["~/]1+/login">
AuthType Basic
AuthName "Trac"
AuthUserFile /somewhere/trac.htpasswd

Require valid-user

Trac and mod_wsgi 4 01/12/26

http://httpd.apache.org/docs/2.2/howto/auth.html

</LocationMatch>

Note that neither a file nor a directory named 'login' needs to exist.

See also the 2mod _auth basic documentation.
Using Digest Authentication

For better security, it is recommended that you either enable SSL or at least use the ?digest? authentication scheme

instead of ?Basic?.

You'll have to create your .htpasswd file with the htdigest command instead of htpasswd, as follows:
htdigest -c /somewhere/trac.htpasswd trac admin

The "trac" parameter above is the "realm", and will have to be reused in the Apache configuration in the AuthName

directive:

<Location "/trac/login">

AuthType Digest

AuthName "trac"

AuthDigestDomain /trac

AuthUserFile /somewhere/trac.htpasswd
Require valid-user

</Location>
For multiple environments, you can use the same LocationMatch as described with the previous method.
Don't forget to activate the mod_auth_digest. For example, on a Debian 4.0r1 (etch) system:
LoadModule auth_digest_module /usr/lib/apache2/modules/mod_auth_digest.so

See also the 2mod auth digest documentation.
Using LDAP Authentication

Configuration for 2mod_Idap authentication in Apache is a bit tricky (httpd 2.2.x and OpenLDAP: slapd 2.3.19)

1. You need to load the following modules in Apache httpd.conf

LoadModule ldap_module modules/mod_ldap.so
LoadModule authnz_ldap_module modules/mod_authnz_ldap.so

Trac and mod_wsgi 5 01/12/26

http://httpd.apache.org/docs/2.2/mod/mod_auth_basic.html
http://httpd.apache.org/docs/2.2/mod/mod_auth_digest.html
http://httpd.apache.org/docs/2.2/mod/mod_ldap.html

2. Your httpd.conf also needs to look something like:

<Location /trac/>
(if you're using it, mod_python specific settings go here)
Order deny,allow
Deny from all
Allow from 192.168.11.0/24
AuthType Basic
AuthName "Trac"
AuthBasicProvider "ldap"
AUthLDAPURL "ldap://127.0.0.1/dc=example,dc=co,dc=ke?uid?sub? (objectClass=inetOrgPerson)"
authzldapauthoritative Off
Require valid-user

</Location>

3. You can use the LDAP interface as a way to authenticate to a Microsoft Active Directory:

Use the following as your LDAP URL.:

AUthLDAPURL "ldap://directory.example.com:3268/DC=example, DC=com?sAMAccountName?sub? (objec

You will also need to provide an account for Apache to use when checking credentials. As this password will be

listed in plaintext in the config, you should be sure to use an account specifically for this task:

AuthLDAPBindDN ldap-auth-user@example.com
AuthLDAPBindPassword "password"

The whole section looks like:

<Location /trac/>
(if you're using it, mod_python specific settings go here)
Order deny,allow
Deny from all
Allow from 192.168.11.0/24
AuthType Basic
AuthName "Trac"
AuthBasicProvider "ldap"
AuthLDAPURL "ldap://adserver.company.com:3268/DC=company,DC=com?sAMAccountName?sub? (objectC]
AuthLDAPBindDN ldap-auth-user@company.com
AuthILDAPBindPassword "the_password"
authzldapauthoritative Off
require valid-user
require ldap-group CN=Trac Users,CN=Users,DC=company, DC=com

</Location>

Trac and mod_wsgi 6 01/12/26

Note 1: This is the case where the LDAP search will get around the multiple OUs, conecting to Global Catalog
Server portion of AD (Notice the port is 3268, not the normal LDAP 389). The GCS is basically a "flattened" tree

which allows searching for a user without knowing to which OU they belong.

Note 2: You can also require the user be a member of a certain LDAP group, instead of just having a valid login:
Require ldap-group CN=Trac Users,CN=Users,DC=example,DC=com

See also:
¢ 2mod authnz ldap, documentation for mod_authnz_ldap

¢ Ymod Idap, documentation for mod_Ildap, which provides connection pooling and a shared cache.
e ?TracHacks:I.dapPlugin for storing TracPermissions in LDAP.

Using SSPI Authentication

If you are using Apache on Windows, you can use mod_auth_sspi to provide single-sign-on. Download the module

from the SourceForge ?mod-auth-sspi project and then add the following to your VirtualHost:

<Location /trac/login>
AuthType SSPI
AuthName "Trac Login"
SSPIAuth On
SSPIAuthoritative On
SSPIDomain MyLocalDomain
SSPIOfferBasic On
SSPIOmitDomain Off
SSPIBasicPreferred On
Require valid-user

</Location>

Using the above, usernames in Trac will be of the form poMAIN\username, s0 you may have to re-add permissions

and such. If you do not want the domain to be part of the username, set SSPTOmitDomain On instead.

Some common problems with SSPI authentication: 2#1055, 2#1168 and 2#3338.

See also ?TracOnWindows/Advanced.

Trac and mod_wsgi 7 01/12/26

http://httpd.apache.org/docs/2.2/mod/mod_authnz_ldap.html
http://httpd.apache.org/docs/2.2/mod/mod_ldap.html
http://trac-hacks.org/wiki/LdapPlugin
http://sourceforge.net/projects/mod-auth-sspi/
http://trac.edgewall.org/intertrac/%231055
http://trac.edgewall.org/intertrac/%231168
http://trac.edgewall.org/intertrac/%233338
http://trac.edgewall.org/intertrac/TracOnWindows/Advanced

Using Apache authentication with the Account Manager plugin's Login form

To begin with, see the basic instructions for using the Account Manager plugin's 2Login module and its
2HttpAuthStore authentication module.

Note: If is difficult to get HttpAuthStore to work with WSGI when using any Account Manager version prior to

acct_mgr-0.4. Upgrading is recommended.
Here is an example (from the HttpAuthStore link) using acct_mgr-0.4 for hosting a single project:

[components]
; be sure to enable the component

acct_mgr.http.HttpAuthStore = enabled

[account—manager]
; configure the plugin to use a page that is secured with http authentication
authentication_url = /authFile

password_store = HttpAuthStore
This will generally be matched with an Apache config like:

<Location /authFile>
?HTTP authentication configuration?
Require valid-user

</Location>

Note that authFile need not exist. See the HttpAuthStore link above for examples where multiple Trac projects are

hosted on a server.

Example: Apache/mod_wsgi with Basic Authentication, Trac being at the root of
a virtual host

Per the mod_wsgi documentation linked to above, here is an example Apache configuration that a) serves the Trac

instance from a virtualhost subdomain and b) uses Apache basic authentication for Trac authentication.

If you want your Trac to be served from e.g. http://trac.my-proj.my-site.org, then from the folder e.g.
/home/trac-for-my-pro3j, if you used the command trac-admin the-env initenv to create a folder the-env,

and you used trac-admin the-env deploy the-deploy to create a folder the-deploy, then first:

Create the htpasswd file:

cd /home/trac-for-my-proj/the-env

Trac and mod_wsgi 8 01/12/26

http://trac-hacks.org/wiki/AccountManagerPlugin/Modules#LoginModule
http://trac-hacks.org/wiki/AccountManagerPlugin/AuthStores#HttpAuthStore

htpasswd -c htpasswd firstuser
and add more users to it as needed:

htpasswd htpasswd seconduser
(keep the file above your document root for security reasons)

Create this file e.g. (ubuntu) /etc/apache2/sites—enabled/trac.my-proj.my-site.org.conf with the

following contents:

<Directory /home/trac-for-my-proj/the-deploy/cgi-bin/trac.wsgi>
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>

<VirtualHost *:80>
ServerName trac.my-proj.my-site.org
DocumentRoot /home/trac-for-my-proj/the-env/htdocs/
WSGIScriptAlias / /home/trac—-for-my-proj/the-deploy/cgi-bin/trac.wsgi
<Location '/'>
AuthType Basic
AuthName "Trac"
AuthUserFile /home/trac-for-my-proj/the-env/htpasswd
Require valid-user
</Location>

</VirtualHost>

Note: for subdomains to work you would probably also need to alter /etc/hosts and add A-Records to your host's
DNS.

Troubleshooting

Use a recent version

Please use either version 1.6, 2.4 or later of mod_wsgi. Versions prior to 2.4 in the 2.X branch have problems with
some Apache configurations that use WSGI file wrapper extension. This extension is used in Trac to serve up
attachments and static media files such as style sheets. If you are affected by this problem attachments will appear
to be empty and formatting of HTML pages will appear not to work due to style sheet files not loading properly.
Another frequent symptom is that binary attachment downloads are truncated. See mod_wsgi tickets 2#100 and

2#132.

Trac and mod_wsgi 9 01/12/26

http://code.google.com/p/modwsgi/issues/detail?id=100
http://code.google.com/p/modwsgi/issues/detail?id=132

Note: using mod_wsgi 2.5 and Python 2.6.1 gave an Internal Server Error on my system (Apache 2.2.11 and Trac
0.11.2.1). Upgrading to Python 2.6.2 (as suggested 2here) solved this for me
-- Graham Shanks

If you plan to use mod_wsgi in embedded mode on Windows or with the MPM worker on Linux, then you'll even

need version 0.3.4 or greater (see 2#10675 for details).
Getting Trac to work nicely with SSPI and 'Require Group'

If like me you've set Trac up on Apache, Win32 and configured SSPI, but added a 'Require group' option to your
apache configuration, then the SSPIOmitDomain option is probably not working. If its not working your usernames

in trac are probably looking like 'DOMAIN\user' rather than 'user'.
This WSGI script 'fixes' things, hope it helps:

import os

import trac.web.main

os.environ['TRAC_ENV'] = '/usr/local/trac/mysite’
os.environ['PYTHON_EGG_CACHE'] = '/usr/local/trac/mysite/eggs'

def application(environ, start_response):
if "\\" in environ['REMOTE_USER']:
environ|['REMOTE_USER'] = environ['REMOTE_USER'].split ("\\", 1)[1]

return trac.web.main.dispatch_request (environ, start_response)

Trac with PostgreSQL

When using the mod_wsgi adapter with multiple Trac instances and PostgreSQL (or MySQL?) as a database

back-end, the server may create a lot of open database connections and thus PostgreSQL processes.

A somewhat brutal workaround is to disabled connection pooling in Trac. This is done by setting poolable =

Falseintrac.db.postgres_backendOnthePostgreSQLConnectionCkB&

But it's not necessary to edit the source of Trac, the following lines in trac.wsgi will also work:

import trac.db.postgres_backend

trac.db.postgres_backend.PostgreSQLConnection.poolable = False
or

import trac.db.mysgl_backend

Trac and mod_wsgi 10 01/12/26

http://www.mail-archive.com/modwsgi@googlegroups.com/msg01917.html
http://trac.edgewall.org/intertrac/%2310675

trac.db.mysgl_backend.MySQLConnection.poolable = False

Now Trac drops the connection after serving a page and the connection count on the database will be kept minimal.

This is not a recommended approach though. See also the notes at the bottom of the 2mod _wsgi's
IntegrationWithTrac wiki page.

Other resources

For more troubleshooting tips, see also the mod python troubleshooting section, as most Apache-related issues are

quite similar, plus discussion of potential ?application issues when using mod_wsgi. The wsgi page also has a

Mntegration With Trac document.

See also: TracGuide, TracInstall, FastCGI, ModPython, 2TracNginxRecipe

Trac and mod_wsgi 11 01/12/26

http://code.google.com/p/modwsgi/wiki/IntegrationWithTrac
http://code.google.com/p/modwsgi/wiki/IntegrationWithTrac
http://code.google.com/p/modwsgi/wiki/ApplicationIssues
http://code.google.com/p/modwsgi/wiki/IntegrationWithTrac
http://trac.edgewall.org/intertrac/TracNginxRecipe

	tmpQKp0O5tracpdf

