
Contents

Permission Policies
AuthzPolicy

Configuration1.
Usage Notes2.
Missing Features3.

1.

AuthzSourcePolicy (mod_authz_svn-like permission policy)
Trac Configuration1.
Subversion Configuration2.

2.

1.

Debugging permissions2.

Fine grained permissions

Before Trac 0.11, it was only possible to define fine-grained permissions checks on the repository browser
sub-system.

Since 0.11, there's a general mechanism in place that allows custom permission policy plugins to grant or deny
any action on any kind of Trac resources, even at the level of specific versions of such resources.

Note that for Trac 0.12, authz_policy has been integrated as an optional module (in
tracopt.perm.authz_policy.*), so it's installed by default and can simply be activated via the Plugins panel in
the Trac administration module.

Permission Policies

A great diversity of permission policies can be implemented, and Trac comes with a few examples.

Which policies are currently active is determined by a configuration setting in TracIni: e.g.

[trac]

permission_policies = AuthzSourcePolicy, DefaultPermissionPolicy, LegacyAttachmentPolicy

This lists the #AuthzSourcePolicy described below as the first policy, followed by the DefaultPermissionPolicy
which checks for the traditional coarse grained style permissions described in TracPermissions, and the
LegacyAttachmentPolicy which knows how to use the coarse grained permissions for checking the permissions
available on attachments.

Fine grained permissions 1 01/11/26

Among the possible optional choices, there is #AuthzPolicy, a very generic permission policy, based on an
Authz-style system. See ?authz_policy.py for details.

Another popular permission policy #AuthzSourcePolicy, re-implements the pre-0.12 support for checking
fine-grained permissions limited to Subversion repositories in terms of the new system.

See also ?sample-plugins/permissions for more examples.

AuthzPolicy

Configuration

Install ?ConfigObj (still needed for 0.12).•
Copy authz_policy.py into your plugins directory (only for Trac 0.11).•
Put a ?authzpolicy.conf file somewhere, preferably on a secured location on the server, not readable for
others than the webuser. If the file contains non-ASCII characters, the UTF-8 encoding should be used.

•

Update your trac.ini:
modify the permission_policies entry in the [trac] section

[trac]

...

permission_policies = AuthzPolicy, DefaultPermissionPolicy, LegacyAttachmentPolicy

1.

add a new [authz_policy] section

[authz_policy]

authz_file = /some/trac/env/conf/authzpolicy.conf

2.

enable the plugin through WebAdmin or by editing the [components] section

[components]

...

Trac 0.12

tracopt.perm.authz_policy.* = enabled

for Trac 0.11 use this

#authz_policy.* = enabled

3.

•

Usage Notes

Note that the order in which permission policies are specified is quite critical, as policies will be examined in the
sequence provided.

A policy will return either True, False or None for a given permission check. True is returned if the policy

Fine grained permissions 2 01/11/26

http://trac.edgewall.org/intertrac/source%3Abranches/0.12-stable/tracopt/perm/authz_policy.py
http://trac.edgewall.org/intertrac/source%3Abranches/0.12-stable/sample-plugins/permissions
http://www.voidspace.org.uk/python/configobj.html
http://swapoff.org/files/authzpolicy.conf

explicitly grants the permission. False is returned if the policy explicitly denies the permission. None is returned if
the policy is unable to either grant or deny the permission.

NOTE: Only if the return value is None will the next permission policy be consulted. If none of the policies
explicitly grants the permission, the final result will be False (i.e. permission denied).

The authzpolicy.conf file is a .ini style configuration file:

[wiki:PrivatePage@*]

john = WIKI_VIEW, !WIKI_MODIFY

jack = WIKI_VIEW

* =

Each section of the config is a glob pattern used to match against a Trac resource descriptor. These
descriptors are in the form:

<realm>:<id>@<version>[/<realm>:<id>@<version> ...]

Resources are ordered left to right, from parent to child. If any component is inapplicable, * is substituted.
If the version pattern is not specified explicitely, all versions (@*) is added implicitly

•

Example: Match the WikiStart page

[wiki:*]

[wiki:WikiStart*]

[wiki:WikiStart@*]

[wiki:WikiStart]

Example: Match the attachment wiki:WikiStart@117/attachment/FOO.JPG@* on WikiStart

[wiki:*]

[wiki:WikiStart*]

[wiki:WikiStart@*]

[wiki:WikiStart@*/attachment/*]

[wiki:WikiStart@117/attachment/FOO.JPG]

Sections are checked against the current Trac resource descriptor IN ORDER of appearance in the
configuration file. ORDER IS CRITICAL.

•

Once a section matches, the current username is matched against the keys (usernames) of the section, IN
ORDER.

If a key (username) is prefixed with a @, it is treated as a group.♦

•

Fine grained permissions 3 01/11/26

If a value (permission) is prefixed with a !, the permission is denied rather than granted.♦

Note: Other groups which are created by user (e.g. by 'adding subjects to groups' on web interface
page Admin / Permissions) cannot be used. See ?#5648 for details about this missing feature

For example, if the authz_file contains:

[wiki:WikiStart@*]

* = WIKI_VIEW

[wiki:PrivatePage@*]

john = WIKI_VIEW

* = !WIKI_VIEW

and the default permissions are set like this:

john WIKI_VIEW

jack WIKI_VIEW

anonymous has no WIKI_VIEW

Then:

All versions of WikiStart will be viewable by everybody (including anonymous)•
PrivatePage will be viewable only by john•
other pages will be viewable only by john and jack•

Groups:

[groups]

admins = john, jack

devs = alice, bob

[wiki:Dev@*]

@admins = TRAC_ADMIN

@devs = WIKI_VIEW

* =

[*]

@admins = TRAC_ADMIN

* =

Then:

Fine grained permissions 4 01/11/26

http://trac.edgewall.org/intertrac/ticket%3A5648

everything is blocked (whitelist approach), but•
admins get all TRAC_ADMIN everywhere and•
devs can view wiki pages.•

Some repository examples (Browse Source specific):

A single repository:

[repository:test_repo@*]

john = BROWSER_VIEW, FILE_VIEW

John has BROWSER_VIEW and FILE_VIEW for the entire test_repo

All repositories:

[repository:*@*]

jack = BROWSER_VIEW, FILE_VIEW

John has BROWSER_VIEW and FILE_VIEW for all repositories

Very fine grain repository access:

John has BROWSER_VIEW and FILE_VIEW access to trunk/src/some/location/ only

[repository:test_repo@*/source:trunk/src/some/location/*@*]

john = BROWSER_VIEW, FILE_VIEW

John has BROWSER_VIEW and FILE_VIEW access to only revision 1 of all files at trunk/src/some/location only

[repository:test_repo@*/source:trunk/src/some/location/*@1]

john = BROWSER_VIEW, FILE_VIEW

John has BROWSER_VIEW and FILE_VIEW access to all revisions of 'somefile' at trunk/src/some/location only

[repository:test_repo@*/source:trunk/src/some/location/somefile@*]

john = BROWSER_VIEW, FILE_VIEW

John has BROWSER_VIEW and FILE_VIEW access to only revision 1 of 'somefile' at trunk/src/some/location only

[repository:test_repo@*/source:trunk/src/some/location/somefile@1]

john = BROWSER_VIEW, FILE_VIEW

Note: In order for Timeline to work/visible for John, we must add CHANGESET_VIEW to the above permission
list.

Missing Features

Although possible with the DefaultPermissionPolicy handling (see Admin panel), fine-grained permissions still
miss those grouping features (see ?#9573, ?#5648). Patches are partially available, see forgotten

Fine grained permissions 5 01/11/26

http://trac.edgewall.org/intertrac/ticket%3A9573
http://trac.edgewall.org/intertrac/ticket%3A5648

authz_policy.2.patch part of ?#6680).

You cannot do the following:

[groups]

team1 = a, b, c

team2 = d, e, f

team3 = g, h, i

departmentA = team1, team2

Permission groups are not supported either. You cannot do the following:

[groups]

permission_level_1 = WIKI_VIEW, TICKET_VIEW

permission_level_2 = permission_level_1, WIKI_MODIFY, TICKET_MODIFY

[*]

@team1 = permission_level_1

@team2 = permission_level_2

@team3 = permission_level_2, TICKET_CREATE

AuthzSourcePolicy (mod_authz_svn-like permission policy)

At the time of this writing, the old fine grained permissions system from Trac 0.11 and before used for restricting
access to the repository has been converted to a permission policy component, but from the user point of view, this
makes little if no difference.

That kind of fine-grained permission control needs a definition file, which is the one used by Subversion's
mod_authz_svn. More information about this file format and about its usage in Subversion is available in the
?Path-Based Authorization section in the Server Configuration chapter of the svn book.

Example:

[/]

* = r

[/branches/calc/bug-142]

harry = rw

sally = r

[/branches/calc/bug-142/secret]

harry =

/ = Everyone has read access by default•

Fine grained permissions 6 01/11/26

http://trac.edgewall.org/intertrac/ticket%3A6680
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.pathbasedauthz.html

/branches/calc/bug-142 = harry has read/write access, sally read only•
/branches/calc/bug-142/secret = harry has no access, sally has read access (inherited as a sub folder
permission)

•

Trac Configuration

To activate fine grained permissions you must specify the authz_file option in the [trac] section of trac.ini. If
this option is set to null or not specified the permissions will not be used.

[trac]

authz_file = /path/to/svnaccessfile

If you want to support the use of the [modulename:/some/path] syntax within the authz_file, add

authz_module_name = modulename

where modulename refers to the same repository indicated by the repository_dir entry in the [trac] section. As
an example, if the repository_dir entry in the [trac] section is /srv/active/svn/blahblah, that would yield
the following:

[trac]

authz_file = /path/to/svnaccessfile

authz_module_name = blahblah

...

repository_dir = /srv/active/svn/blahblah

where the svn access file, /path/to/svnaccessfile, contains entries such as [blahblah:/some/path].

Note: Usernames inside the Authz file must be the same as those used inside trac.

As of version 0.12, make sure you have AuthzSourcePolicy included in the permission_policies list in trac.ini,
otherwise the authz permissions file will be ignored.

[trac]

permission_policies = AuthzSourcePolicy, DefaultPermissionPolicy, LegacyAttachmentPolicy

Subversion Configuration

The same access file is typically applied to the corresponding Subversion repository using an Apache directive like
this:

<Location /repos>

Fine grained permissions 7 01/11/26

 DAV svn

 SVNParentPath /usr/local/svn

 # our access control policy

 AuthzSVNAccessFile /path/to/svnaccessfile

</Location>

For information about how to restrict access to entire projects in a multiple project environment see
?wiki:TracMultipleProjectsSVNAccess

Debugging permissions

In trac.ini set:

[logging]

log_file = trac.log

log_level = DEBUG

log_type = file

And watch:

tail -n 0 -f log/trac.log | egrep '\[perm\]|\[authz_policy\]'

to understand what checks are being performed. See the sourced documentation of the plugin for more info.

See also: TracPermissions, ?TracHacks:FineGrainedPageAuthzEditorPlugin for a simple editor plugin.

Fine grained permissions 8 01/11/26

http://trac.edgewall.org/intertrac/wiki%3ATracMultipleProjectsSVNAccess
http://trac-hacks.org/wiki/FineGrainedPageAuthzEditorPlugin

	tmpvrtmqltracpdf

