Trac with FastCGl

Since version 0.9, Trac supports being run through the 2FastCGI interface. Like mod python, this allows Trac to
remain resident, and is faster than external CGI interfaces which must start a new process for each request.
However, unlike mod_python, it is able to support 2SuEXEC. Additionally, it is supported by much wider variety

of web servers.

Note for Windows: Trac's FCGI does not run under Windows, as Windows does not implement Socket.fromfd,

which is used by _fcgi.py
Simple Apache configuration

There are two FastCGI modules commonly available for Apache: mod_fastcgi and mod_fcgid. The
FastCgiIpcDir and FastCgiConfig directives discussed below are mod_fastcgi directives; the befaultInitEnv

1S amod_fcgid directive.
For mod_fastcgi, add the following to an appropriate Apache configuration file:

Enable fastcgi for .fcgi files
(If you're using a distro package for mod_fcgi, something like
this is probably already present)
<IfModule mod_fastcgi.c>
AddHandler fastcgi-script .fcgi
FastCgilIpcDir /var/lib/apache2/fastcgi
</IfModule>
LoadModule fastcgi_module /usr/lib/apache2/modules/mod_fastcgi.so

Setting FastCgiIpcDir is optional if the default is suitable. Note that the LoadModule line must be after the

IfModule group.
Configure scriptalias or similar options as described in TracCgi, but calling trac. fcgi instead of trac.cgi.
You can set up the TRac_ENV as an overall default:
FastCgiConfig —-initial-env TRAC_ENV=/path/to/env/trac
Or you can serve multiple Trac projects in a directory like:

FastCgiConfig —-initial-env TRAC_ENV_PARENT_DIR=/parent/dir/of/projects

Trac with FastCGl 1 01/12/26

http://www.fastcgi.com/
http://httpd.apache.org/docs/suexec.html

But neither of these will work for mod_fcgid. A similar but partial solution for mod_fcgid is:
DefaultInitEnv TRAC_ENV /path/to/env/trac/
But this cannot be used in Directory or Location context, which makes it difficult to support multiple projects.

A better method which works for both of these modules (and for 2lighttpd and CGI as well), because it involves no

server configuration settings for environment variables, is to set one of the variables in trac. fcgi, e.g.:

import os

os.environ['TRAC_ENV'] = "/path/to/projectenv"
or

import os
os.environ['TRAC_ENV_PARENT_DIR'] = "/path/to/project/parent/dir"

Using this method, different projects can be supported by using different . £cgi scripts with different
ScriptAliases, copying and appropriately renaming trac. fcgi and adding the above code to create each such

script.

See 2this fcgid example config which uses a ScriptAlias directive with trac.fcgi with a trailing / like this:

ScriptAlias / /srv/tracsite/cgi-bin/trac.fcgi/

Simple Cherokee Configuration

Configuration wanted.

Simple Lighttpd Configuration

The FastCGI front-end was developed primarily for use with alternative webservers, such as 2lighttpd.

lighttpd is a secure, fast, compliant and very flexible web-server that has been optimized for high-performance

environments. It has a very low memory footprint compared to other web servers and takes care of CPU load.

For using trac. fcgi with lighttpd add the following to your lighttpd.conf:

fastcgi.server = ("/trac" =>
("trac" =>

("socket" => "/tmp/trac-fastcgi.sock",

Trac with FastCGl 2 01/12/26

http://www.lighttpd.net/
https://coderanger.net/~coderanger/httpd/fcgi_example.conf
http://www.lighttpd.net/

"bin-path" => "/path/to/cgi-bin/trac.fcgi",
"check-local" => "disable",
"bin-environment" =>

("TRAC_ENV" => "/path/to/projenv")

Note that you will need to add a new entry to fastcgi.server for each separate Trac instance that you wish to run.
Alternatively, you may use the TRAC_ENV_PARENT_DIR variable instead of TRac_gNvV as described above, and you
may set one of the two in trac. fcgi instead of in 1ighttpd.conf using bin-environment (as in the section

above on Apache configuration).

For using two projects with lighttpd add the following to your 1ighttpd.conf:

fastcgi.server = ("/first" =>
("first" =>
("socket" => "/tmp/trac-fastcgi-first.sock",
"bin-path" => "/path/to/cgi-bin/trac.fcgi",
"check-local" => "disable",
"bin-environment" =>
("TRAC_ENV" => "/path/to/projenv-first")
)
),

"/second" =>
("second" =>
("socket" => "/tmp/trac-fastcgi-second.sock",

"bin-path" => "/path/to/cgi-bin/trac.fcgi",
"check-local" => "disable",
"bin-environment" =>

("TRAC_ENV" => "/path/to/projenv-second")

Note that field values are different. If you prefer setting the environment variables in the . fcgi scripts, then
copy/rename trac. fcgi, €.g.,t0 first.fcgi and second. fcgi, and reference them in the above settings. Note
that the above will result in different processes in any event, even if both are running from the same trac. fcgi

script.

Note from c00i90wn: It's very important the order on which server.modules are loaded, if mod_auth is not loaded
BEFORE mod_fastcgi, then the server will fail to authenticate the user.

Trac with FastCGl 3 01/12/26

For authentication you should enable mod_auth in lighttpd.conf 'server.modules’, select auth.backend and auth

rules:

server.modules =

"mod_auth",

auth.backend = "htpasswd"

Separated password files for each project
See "Conditional Configuration" in
http://trac.lighttpd.net/trac/file/branches/lighttpd-merge-1.4.x/doc/configuration.txt

SHTTP ["url"] =~ "*/first/" {

auth.backend.htpasswd.userfile = "/path/to/projenv-first/htpasswd.htaccess"
}
SHTTP ["url"] =~ "~/second/" {

auth.backend.htpasswd.userfile = "/path/to/projenv-second/htpasswd.htaccess"

Enable auth on trac URLs, see
http://trac.lighttpd.net/trac/file/branches/lighttpd-merge-1.4.x/doc/authentication.txt

auth.require = ("/first/login" =>
("method" => "basic",
"realm" => "First project",
"require" => "valid-user"

),
"/second/login" =>

("method" => "basic",
"realm" => "Second project",
"require" => "valid-user"

Note that lighttpd (I use version 1.4.3) stopped if password file doesn't exist.

Note that lighttpd doesn't support 'valid-user' in versions prior to 1.3.16.

Conditional configuration is also useful for mapping static resources, i.e. serving out images and CSS directly
instead of through FastCGI:

Trac with FastCGl 4 01/12/26

Aliasing functionality is needed

server.modules += ("mod_alias")

Setup an alias for the static resources

alias.url = ("/trac/chrome/common" => "/usr/share/trac/htdocs")

Use negative lookahead, matching all requests that ask for any resource under /trac, EXCEPT
/trac/chrome/common, and use FastCGI for those
SHTTP ["url"] =~ "*/trac(?!/chrome/common)" ({
Even if you have other fastcgi.server declarations for applications other than Trac, do NOT
fastcgi.server = ("/trac" =>
("trac" =>

("socket" => "/tmp/trac-fastcgi.sock",

"bin-path" => "/path/to/cgi-bin/trac.fcgi",

"check-local" => "disable",

"bin-environment" =>

("TRAC_ENV" => "/path/to/projenv")

The technique can be easily adapted for use with multiple projects by creating aliases for each of them, and
wrapping the fastcgi.server declarations inside conditional configuration blocks. Also there is another way to
handle multiple projects and it's to use TRAC_ENV_PARENT_DIR instead of TRAC_ENYV and use global auth,

let's see an example:

This is for handling multiple projects

alias.url = ("/trac/" => "/path/to/trac/htdocs/")
fastcgi.server += ("/projects" =>
("trac" =>
(
"socket" => "/tmp/trac.sock",

"bin-path" => "/path/to/cgi-bin/trac.fcgi",
"check-local" => "disable",
"bin-environment" =>

("TRAC_ENV_PARENT_DIR" => "/path/to/parent/dir/of/projects/")

)
#And here starts the global auth configuration

auth.backend = "htpasswd"
auth.backend.htpasswd.userfile = "/path/to/unique/htpassword/file/trac.htpasswd"
SHTTP ["url"] =~ ""/projects/.*/logins$" {

auth.require = ("/" =>

(

Trac with FastCGl 5 01/12/26

"method" => "basic",
"realm" => "trac",

"require" => "valid-user"

Changing date/time format also supported by lighttpd over environment variable LC_TIME

fastcgi.server = ("/trac" =>
("trac" =>
("socket" => "/tmp/trac-fastcgi.sock",
"bin-path" => "/path/to/cgi-bin/trac.fcgi",
"check-local" => "disable",
"bin-environment" =>
("TRAC_ENV" => "/path/to/projenv",
"LC_TIME" => "ru_RU")

For details about languages specification see TracFaq? question 2.13.

Other important information like 2this updated TracInstall page, and this are useful for non-fastcgi specific

installation aspects.

If you use trac-0.9, read 2about small bug

Relaunch lighttpd, and browse to http://yourhost .example.org/trac to access Trac.

Note about running lighttpd with reduced permissions:
If nothing else helps and trac.fcgi doesn't start with lighttpd settings server.username =
"www-data", server.groupname = "www-data", then in the bin-environment section set

PYTHON_EGG_CACHE to the home directory of www-data or some other directory accessible to this

account for writing.

Simple LiteSpeed? Configuration

The FastCGI front-end was developed primarily for use with alternative webservers, such as ?LiteSpeed.

Trac with FastCGl 6 01/12/26

http://trac.lighttpd.net/trac/wiki/TracInstall
http://lists.edgewall.com/archive/trac/2005-November/005311.html
http://www.litespeedtech.com/

LiteSpeed? web server is an event-driven asynchronous Apache replacement designed from the ground-up to be
secure, scalable, and operate with minimal resources. LiteSpeed? can operate directly from an Apache config file

and is targeted for business-critical environments.

Setup

1) Please make sure you have first have a working install of a Trac project. Test install with ?tracd? first.

2) Create a Virtual Host for this setup. From now on we will refer to this vhost as TracVhost?. For this tutorial we

will be assuming that your trac project will be accessible via:
http://yourdomain.com/trac/
3) Go ?TracVhost? ? External Apps? tab and create a new ?External Application?.

Name: MyTracFCGI
Address: uds://tmp/lshttpd/mytracfcgi.sock

Max Connections: 10

Environment: TRAC_ENV=/fullpathto/mytracproject/ <--- path to root folder of trac project
Initial Request Timeout (secs): 30

Retry Timeout (secs): O

Persistent Connection Yes

Connection Keepalive Timeout: 30

Response Bufferring: No

Auto Start: Yes

Command: /usr/share/trac/cgi-bin/trac.fcgi <--- path to trac.fcgi
Back Log: 50

Instances: 10

4) Optional. If you need to use htpasswd based authentication. Go to ?TracVhost? ? Security? tab and create a new

security ?Realm?.

DB Type: Password File
Realm Name: MyTracUserDB <-—- any name you wish and referenced later

User DB Location: /fullpathto/htpasswd <--—- path to your htpasswd file

If you don?t have a htpasswd file or don?t know how to create the entries within one, go to

Ihttp://sherylcanter.com/encrypt.php, to generate the user:password combos.

5) Go to ?PythonVhost? ? Contexts? and create a new ?FCGI Context?.

URI: /trac/ <-—— URI path to bind to python fcgi app we created
Fast CGI App: [VHost Level] MyTractFCGI <--- select the trac fcgi extapp we just created

Trac with FastCGl 7 01/12/26

http://sherylcanter.com/encrypt.php

Realm: TracUserDB <--- only if (4) is set. select realm created in

6) Modify /fullpathto/mytracproject/conf/trac.ini

#find/set base_rul, url, and link variables

base_url = http://yourdomain.com/trac/ <-——- base url to generate correct links to
url = http://yourdomain.com/trac/ <-—- link of project
link = http://yourdomain.com/trac/ <-—— link of graphic logo

7) Restart LiteSpeed?, ?1swsctrl restart?, and access your new Trac project at:

http://yourdomain.com/trac/

See also TracCgi, TracModPython, Traclnstall, TracGuide

Trac with FastCGl 8 01/12/26

(4)

	tmpdIDN8qtracpdf

