
Trac with FastCGI

Since version 0.9, Trac supports being run through the ?FastCGI interface. Like mod_python, this allows Trac to
remain resident, and is faster than external CGI interfaces which must start a new process for each request.
However, unlike mod_python, it is able to support ?SuEXEC. Additionally, it is supported by much wider variety
of web servers.

Note for Windows: Trac's FCGI does not run under Windows, as Windows does not implement Socket.fromfd,
which is used by _fcgi.py. If you want to connect to IIS, your choice may be ?AJP.

Simple Apache configuration

There are two FastCGI modules commonly available for Apache: mod_fastcgi and mod_fcgid. The
FastCgiIpcDir and FastCgiConfig directives discussed below are mod_fastcgi directives; the DefaultInitEnv
is a mod_fcgid directive.

For mod_fastcgi, add the following to an appropriate Apache configuration file:

Enable fastcgi for .fcgi files

(If you're using a distro package for mod_fcgi, something like

this is probably already present)

<IfModule mod_fastcgi.c>

 AddHandler fastcgi-script .fcgi

 FastCgiIpcDir /var/lib/apache2/fastcgi

</IfModule>

LoadModule fastcgi_module /usr/lib/apache2/modules/mod_fastcgi.so

Setting FastCgiIpcDir is optional if the default is suitable. Note that the LoadModule line must be after the
IfModule group.

Configure ScriptAlias or similar options as described in TracCgi, but calling trac.fcgi instead of trac.cgi.

You can set up the TRAC_ENV as an overall default:

FastCgiConfig -initial-env TRAC_ENV=/path/to/env/trac

Or you can serve multiple Trac projects in a directory like:

FastCgiConfig -initial-env TRAC_ENV_PARENT_DIR=/parent/dir/of/projects

Trac with FastCGI 1 08/24/25

http://www.fastcgi.com/
http://httpd.apache.org/docs/suexec.html
http://trac.edgewall.org/intertrac/TracOnWindowsIisAjp

But neither of these will work for mod_fcgid. A similar but partial solution for mod_fcgid is:

DefaultInitEnv TRAC_ENV /path/to/env/trac/

But this cannot be used in Directory or Location context, which makes it difficult to support multiple projects.

A better method which works for both of these modules (and for ?lighttpd and CGI as well), because it involves no
server configuration settings for environment variables, is to set one of the variables in trac.fcgi, e.g.:

import os

os.environ['TRAC_ENV'] = "/path/to/projectenv"

or

import os

os.environ['TRAC_ENV_PARENT_DIR'] = "/path/to/project/parent/dir"

Using this method, different projects can be supported by using different .fcgi scripts with different
ScriptAliases, copying and appropriately renaming trac.fcgi and adding the above code to create each such
script.

See ?this fcgid example config which uses a ScriptAlias directive with trac.fcgi with a trailing / like this:

ScriptAlias / /srv/tracsite/cgi-bin/trac.fcgi/

Simple Cherokee Configuration

The configuration on Cherokee's side is quite simple. You will only need to know that you can spawn Trac as an
SCGI process. You can either start it manually, or better yet, automatically by letting Cherokee spawn the server
whenever it is down. First set up an information source in cherokee-admin with a local interpreter.

Host:

localhost:4433

Interpreter:

/usr/bin/tracd ?single-env ?daemonize ?protocol=scgi ?hostname=localhost ?port=4433 /path/to/project/

If the port was not reachable, the interpreter command would be launched. Note that, in the definition of the
information source, you will have to manually launch the spawner if you use a Remote host as Information source
instead of a Local interpreter.

Trac with FastCGI 2 08/24/25

http://www.lighttpd.net/
https://coderanger.net/~coderanger/httpd/fcgi_example.conf

After doing this, we will just have to create a new rule managed by the SCGI handler to access Trac. It can be
created in a new virtual server, trac.example.net for instance, and will only need two rules. The default one will use
the SCGI handler associated to the previously created information source. The second rule will be there to serve the
few static files needed to correctly display the Trac interface. Create it as Directory rule for /chrome/common and
just set it to the Static files handler and with a Document root that points to the appropriate files:
/usr/share/trac/htdocs/

Simple Lighttpd Configuration

The FastCGI front-end was developed primarily for use with alternative webservers, such as ?lighttpd.

lighttpd is a secure, fast, compliant and very flexible web-server that has been optimized for high-performance
environments. It has a very low memory footprint compared to other web servers and takes care of CPU load.

For using trac.fcgi(prior to 0.11) / fcgi_frontend.py (0.11) with lighttpd add the following to your lighttpd.conf:

#var.fcgi_binary="/path/to/fcgi_frontend.py" # 0.11 if installed with easy_setup, it is inside the egg directory

var.fcgi_binary="/path/to/cgi-bin/trac.fcgi" # 0.10 name of prior fcgi executable

fastcgi.server = ("/trac" =>

 ("trac" =>

 ("socket" => "/tmp/trac-fastcgi.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv")

)

)

)

Note that you will need to add a new entry to fastcgi.server for each separate Trac instance that you wish to run.
Alternatively, you may use the TRAC_ENV_PARENT_DIR variable instead of TRAC_ENV as described above, and you
may set one of the two in trac.fcgi instead of in lighttpd.conf using bin-environment (as in the section
above on Apache configuration).

For using two projects with lighttpd add the following to your lighttpd.conf:

fastcgi.server = ("/first" =>

 ("first" =>

 ("socket" => "/tmp/trac-fastcgi-first.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

Trac with FastCGI 3 08/24/25

http://www.lighttpd.net/

 ("TRAC_ENV" => "/path/to/projenv-first")

)

),

 "/second" =>

 ("second" =>

 ("socket" => "/tmp/trac-fastcgi-second.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv-second")

)

)

)

Note that field values are different. If you prefer setting the environment variables in the .fcgi scripts, then
copy/rename trac.fcgi, e.g., to first.fcgi and second.fcgi, and reference them in the above settings. Note
that the above will result in different processes in any event, even if both are running from the same trac.fcgi
script.

Note It's very important the order on which server.modules are loaded, if mod_auth is not loaded BEFORE
mod_fastcgi, then the server will fail to authenticate the user.

For authentication you should enable mod_auth in lighttpd.conf 'server.modules', select auth.backend and auth
rules:

server.modules = (

...

 "mod_auth",

...

)

auth.backend = "htpasswd"

Separated password files for each project

See "Conditional Configuration" in

http://trac.lighttpd.net/trac/file/branches/lighttpd-merge-1.4.x/doc/configuration.txt

$HTTP["url"] =~ "^/first/" {

 auth.backend.htpasswd.userfile = "/path/to/projenv-first/htpasswd.htaccess"

}

$HTTP["url"] =~ "^/second/" {

 auth.backend.htpasswd.userfile = "/path/to/projenv-second/htpasswd.htaccess"

}

Enable auth on trac URLs, see

http://trac.lighttpd.net/trac/file/branches/lighttpd-merge-1.4.x/doc/authentication.txt

Trac with FastCGI 4 08/24/25

auth.require = ("/first/login" =>

 ("method" => "basic",

 "realm" => "First project",

 "require" => "valid-user"

),

 "/second/login" =>

 ("method" => "basic",

 "realm" => "Second project",

 "require" => "valid-user"

)

)

Note that lighttpd (I use version 1.4.3) stopped if password file doesn't exist.

Note that lighttpd doesn't support 'valid-user' in versions prior to 1.3.16.

Conditional configuration is also useful for mapping static resources, i.e. serving out images and CSS directly
instead of through FastCGI:

Aliasing functionality is needed

server.modules += ("mod_alias")

Setup an alias for the static resources

alias.url = ("/trac/chrome/common" => "/usr/share/trac/htdocs")

Use negative lookahead, matching all requests that ask for any resource under /trac, EXCEPT in

/trac/chrome/common, and use FastCGI for those

$HTTP["url"] =~ "^/trac(?!/chrome/common)" {

Even if you have other fastcgi.server declarations for applications other than Trac, do NOT use += here

fastcgi.server = ("/trac" =>

 ("trac" =>

 ("socket" => "/tmp/trac-fastcgi.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv")

)

)

)

}

The technique can be easily adapted for use with multiple projects by creating aliases for each of them, and
wrapping the fastcgi.server declarations inside conditional configuration blocks. Also there is another way to

Trac with FastCGI 5 08/24/25

handle multiple projects and it's to use TRAC_ENV_PARENT_DIR instead of TRAC_ENV and use global auth,
let's see an example:

This is for handling multiple projects

 alias.url = ("/trac/" => "/path/to/trac/htdocs/")

 fastcgi.server += ("/projects" =>

 ("trac" =>

 (

 "socket" => "/tmp/trac.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV_PARENT_DIR" => "/path/to/parent/dir/of/projects/")

)

)

)

#And here starts the global auth configuration

 auth.backend = "htpasswd"

 auth.backend.htpasswd.userfile = "/path/to/unique/htpassword/file/trac.htpasswd"

 $HTTP["url"] =~ "^/projects/.*/login$" {

 auth.require = ("/" =>

 (

 "method" => "basic",

 "realm" => "trac",

 "require" => "valid-user"

)

)

 }

Changing date/time format also supported by lighttpd over environment variable LC_TIME

fastcgi.server = ("/trac" =>

 ("trac" =>

 ("socket" => "/tmp/trac-fastcgi.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv",

 "LC_TIME" => "ru_RU")

)

)

)

For details about languages specification see ?TracFaq question 2.13.

Trac with FastCGI 6 08/24/25

http://trac.edgewall.org/intertrac/TracFaq

Other important information like ?this updated TracInstall page, and this are useful for non-fastcgi specific
installation aspects.

If you use trac-0.9, read ?about small bug

Relaunch lighttpd, and browse to http://yourhost.example.org/trac to access Trac.

Note about running lighttpd with reduced permissions:

If nothing else helps and trac.fcgi doesn't start with lighttpd settings server.username =
"www-data", server.groupname = "www-data", then in the bin-environment section set
PYTHON_EGG_CACHE to the home directory of www-data or some other directory accessible to this
account for writing.

Simple LiteSpeed Configuration

The FastCGI front-end was developed primarily for use with alternative webservers, such as ?LiteSpeed.

LiteSpeed web server is an event-driven asynchronous Apache replacement designed from the ground-up to be
secure, scalable, and operate with minimal resources. LiteSpeed can operate directly from an Apache config file
and is targeted for business-critical environments.

Setup

1) Please make sure you have first have a working install of a Trac project. Test install with ?tracd? first.

2) Create a Virtual Host for this setup. From now on we will refer to this vhost as TracVhost?. For this tutorial we
will be assuming that your trac project will be accessible via:

http://yourdomain.com/trac/

3) Go ?TracVhost? ? External Apps? tab and create a new ?External Application?.

Name: MyTracFCGI

Address: uds://tmp/lshttpd/mytracfcgi.sock

Max Connections: 10

Environment: TRAC_ENV=/fullpathto/mytracproject/ <--- path to root folder of trac project

Initial Request Timeout (secs): 30

Retry Timeout (secs): 0

Persistent Connection Yes

Connection Keepalive Timeout: 30

Trac with FastCGI 7 08/24/25

http://trac.lighttpd.net/trac/wiki/TracInstall
http://lists.edgewall.com/archive/trac/2005-November/005311.html
http://www.litespeedtech.com/

Response Bufferring: No

Auto Start: Yes

Command: /usr/share/trac/cgi-bin/trac.fcgi <--- path to trac.fcgi

Back Log: 50

Instances: 10

4) Optional. If you need to use htpasswd based authentication. Go to ?TracVhost? ? Security? tab and create a new
security ?Realm?.

DB Type: Password File

Realm Name: MyTracUserDB <--- any name you wish and referenced later

User DB Location: /fullpathto/htpasswd <--- path to your htpasswd file

If you don?t have a htpasswd file or don?t know how to create the entries within one, go to
?http://sherylcanter.com/encrypt.php, to generate the user:password combos.

5) Go to ?PythonVhost? ? Contexts? and create a new ?FCGI Context?.

URI: /trac/ <--- URI path to bind to python fcgi app we created

Fast CGI App: [VHost Level] MyTractFCGI <--- select the trac fcgi extapp we just created

Realm: TracUserDB <--- only if (4) is set. select realm created in (4)

6) Modify /fullpathto/mytracproject/conf/trac.ini

#find/set base_rul, url, and link variables

base_url = http://yourdomain.com/trac/ <--- base url to generate correct links to

url = http://yourdomain.com/trac/ <--- link of project

link = http://yourdomain.com/trac/ <--- link of graphic logo

7) Restart LiteSpeed, ?lswsctrl restart?, and access your new Trac project at:

http://yourdomain.com/trac/

Simple Nginx Configuration

1) Nginx configuration snippet - confirmed to work on 0.6.32

 server {

 listen 10.9.8.7:443;

 server_name trac.example;

 ssl on;

 ssl_certificate /etc/ssl/trac.example.crt;

 ssl_certificate_key /etc/ssl/trac.example.key;

Trac with FastCGI 8 08/24/25

http://sherylcanter.com/encrypt.php

 ssl_session_timeout 5m;

 ssl_protocols SSLv2 SSLv3 TLSv1;

 ssl_ciphers ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

 ssl_prefer_server_ciphers on;

 # (Or ``^/some/prefix/(.*)``.

 if ($uri ~ ^/(.*)) {

 set $path_info /$1;

 }

 # You can copy this whole location to ``location [/some/prefix]/login``

 # and remove the auth entries below if you want Trac to enforce

 # authorization where appropriate instead of needing to authenticate

 # for accessing the whole site.

 # (Or ``location /some/prefix``.)

 location / {

 auth_basic "trac realm";

 auth_basic_user_file /home/trac/htpasswd;

 # socket address

 fastcgi_pass unix:/home/trac/run/instance.sock;

 # python - wsgi specific

 fastcgi_param HTTPS on;

 ## WSGI REQUIRED VARIABLES

 # WSGI application name - trac instance prefix.

 # (Or ``fastcgi_param SCRIPT_NAME /some/prefix``.)

 fastcgi_param SCRIPT_NAME "";

 fastcgi_param PATH_INFO $path_info;

 ## WSGI NEEDED VARIABLES - trac warns about them

 fastcgi_param REQUEST_METHOD $request_method;

 fastcgi_param SERVER_NAME $server_name;

 fastcgi_param SERVER_PORT $server_port;

 fastcgi_param SERVER_PROTOCOL $server_protocol;

 # for authentication to work

 fastcgi_param AUTH_USER $remote_user;

 fastcgi_param REMOTE_USER $remote_user;

 }

 }

2) Modified trac.fcgi:

#!/usr/bin/env python

Trac with FastCGI 9 08/24/25

import os

sockaddr = '/home/trac/run/instance.sock'

os.environ['TRAC_ENV'] = '/home/trac/instance'

try:

 from trac.web.main import dispatch_request

 import trac.web._fcgi

 fcgiserv = trac.web._fcgi.WSGIServer(dispatch_request,

 bindAddress = sockaddr, umask = 7)

 fcgiserv.run()

except SystemExit:

 raise

except Exception, e:

 print 'Content-Type: text/plain\r\n\r\n',

 print 'Oops...'

 print

 print 'Trac detected an internal error:'

 print

 print e

 print

 import traceback

 import StringIO

 tb = StringIO.StringIO()

 traceback.print_exc(file=tb)

 print tb.getvalue()

3) reload nginx and launch trac.fcgi like that:

trac@trac.example ~ $./trac-standalone-fcgi.py

The above assumes that:

There is a user named 'trac' for running trac instances and keeping trac environments in its home directory.•
/home/trac/instance contains a trac environment•
/home/trac/htpasswd contains authentication information•
/home/trac/run is owned by the same group the nginx runs under

and if your system is Linux the /home/trac/run has setgid bit set (chmod g+s run)♦
and patch from ticket #T7239 is applied, or you'll have to fix the socket file permissions every time♦

•

Unfortunately nginx does not support variable expansion in fastcgi_pass directive. Thus it is not possible to serve
multiple trac instances from one server block.

Trac with FastCGI 10 08/24/25

If you worry enough about security, run trac instances under separate users.

Another way to run trac as a FCGI external application is offered in ticket #T6224

See also: TracGuide, TracInstall, ModWSGI, CGI, ModPython, ?TracNginxRecipe

Trac with FastCGI 11 08/24/25

http://trac.edgewall.org/intertrac/TracNginxRecipe

	tmp7LYHzftracpdf

