T3Q Documentation

T3Q Documentation

Outline

1. Installation / Setup

2. Using T3Q

1. Configuration

2. Command-Line Usage

3. Output Format

4. Performance and Memory Usage

3. ASN.1 Support
1. Stages

2. Remote usage for Stage 1
3. Limitations

4. T3 uality Checks

5. 1. Naming Conventions
6. 1. Structure of Data

1.
2.
3.

Alphabetic Ordering of Types withing Groups
Grouping of Ports and Related Messages
No All Keyword in Port Type Definitions

7. 1. Log Statements

1.

2. External Function Invocation Must Be Preceded By A Log Statement
3. Inconclusive or Fail Setverdict Statement Must be Preceded by a Log ?

Log Format Must Match the Format of a Regular Expression

8. 1. Code Style

1.

O 0 3 O U B W DN

10.

—_—
—

12.
13.
14.

T3Q Documentation

There Must Be No Labels or Goto Statements

. There Must Be No Nested Alt Statements

. There Must Be No Permutation Keyword

. There Must Be No AnyType Keyword

. There Must Be No Modified Template of a Modified Template

. Local Definitions Must Be Declared at the Beginning of Testcases. ?
. Import Statements Must Be Declared at the Beginning of Modules

. There Must Be No Duplicated Identifiers On the Module Level
. There Must Be No Unused Definitions On the Module Level

There Must Be No Inline Templates

. There Must Be No Over-specific Runs On Clauses

There Must Be No Unused Imports
There Must Be No Unused Formal Parameters

There Must Be No Unused I.ocal Definitions

01/12/26

15. There Must Be No Uninitialised I.ocal Variables
16. There Must Be No Literals

17. There Must Be No ValueOf Operations for Values
18. There Must Be No AnyValueOrNone in List Values
19. There Must Be No Uninitialized Fields in Templates
20. There Must Be No Zero or Multiple Fields in Union Templates
9. 1. Test Suite Modularization: Module Containment
1. TypesAndValues Module Must Contain Only Type and Constant Definitions
. Templates Module Must Contain Only Template Definitions
. Functions Module Must Contain Only Function and Altstep Definitions
. Testcases Module Must Contain Only Testcase and Function Definitions That ?
. ModuleParams Module Must Contain Only Modulepar Definitions
. Interface Module Must Contain Only Component. Port. and Type Definitions
. TestSystem Module Must Contain Only Component and Port Definitions
8. TestControl Module Must Contain Only Control Part Definition
10. 1. Test Suite Modularization: Importing Libraries
1. TypesAndValues Modules Must Always Import From Certain Modules
2. Testcases Module Must Always Import From Modules Prefixes with ?
11. 1. Module Size
12. T3Q Code Formatting Feature
13. T3Q Misc Features
1. List Imported Module Names
2. List Imported File Names
3. List Importing Module Names
4. List Importing File Names

~N O L AW

T3Q is a quality checking and code formatting tool for TTCN-3. It analyzes TTCN-3 source code for a defined set
of anomalies that affect the quality of the code. In addition, it presents an option to automatically format (beautify,

pretty-print) the source code according to a number of settings.

Installation / Setup

The following software must be installed on the system prior to the use of T3Q

¢ A Java Runtime, at least version 1.7 (Zhttp://java.sun.com, will be installed automatically during T3Q

installation if not already present).

The T3Q command-line tool requires two environment variables to be set no matter what the operating system is.

T3Q Documentation 2 01/12/26

http://java.sun.com

® JAVA_HOME - should point to the Java Runtime

® T30_HOME - should point to the installation directory of T3Q

The installation tool for Windows should take care of setting these environment variables correctly including the
installation of Java if necessary. For Unix environments, these have to be configured manually (we will refer to
MacOS as Unix environment as well). In order to use T3Q properly, we suggest to include T30_HOME in the path

variable of your Unix system. The Windows Installer automatically takes care of the inclusion in the system path.

Using T3Q

T3Q is a command line tool which can be called by simply typing "t3q" in Windows or on Unix systems. The
Windows command-line can be accessed by starting the program "cmd". For Unix systems, we only support bash

environments.
Configuration

T3Q uses an XML-based configuration format. Starting with version v0.4.2, the location of the configuration file
must be supplied as a command line option during execution (the location was previously based in the default user's
data location - depending on the system, a file t3q.xm1 was stored in $APPDATA$\T30Q (Windows) or in ~/.t3q/
(Unix)). The location of the sappDATAS directory depended on the username, the Windows version and possibly the
localization. For example, for a user 'foobar' on a German Windows XP machine, the resulting configuration path
would be C:\Documents and Settings\foobar\Application Data\T3Q. In version v0.4.2 and onwards, the
location of the configuration file has to be supplied every time T3Q is called. Additionally, starting with version
v1.0.1, if there is no existing configuration file in the selected location, the tool will prompt the user to use the
appropriate option to generate a new configuration with the default settings. Thus, the tool has to be started with the
appropriate parameter to generate a new configuration prior to actual usage. This way, it will be possible to modify
the configuration file to accommodate the particular needs of the user prior to performing any analysis. By location
here the path, filename, and extension of the configuration file are meant, which implies that any filename and any
extension can be used. It is probably best to retain certain norms in naming the configuration files, at least in

preserving the file extensions (.xm1) to avoid confusion.
Please note that after an update, during the development stage, the configuration files will often be extended. Thus,
it may be necessary to generate a new configuration file and transfer the custom settings from the old configuration

file. The configuration file has two sections:

¢ A configuration profiles section

e A main section

T3Q Documentation 3 01/12/26

The ConfigurationProfiles section contains a list of QualityCheckProfile elements. Its elements contain the tags
profilename as well as check* elements and other specific elements that are needed for the configuration of some
of the quality checks. In the default t3g.xm1 that is created, there is a profile called defaultProfile that initializes all
profile configuration values to the default values and enables all checks. This is also the configuration of an
implicitly given profile called all. The all profile is not part of the XML configuration, but it exists and is known to
the tool.

Since v0.3.1, configuration profiles also have a version (profileVersion element), that regulates the profile
compatibility. If a profile from an older version is used, T3Q will throw and error and recommend profile upgrade
or the selection of another profile. Also, further robustness checks have been introduced to provide hints if the
configuration profile is otherwise incompatible or corrupted. In case of a problem that can be localized, a

corresponding error message is provided suggesting the location of the problem.

Also, there are several generic options, that affect the overall behavior of the T3Q tool. The known extensions for
files that are to be processed can be specified by means of a regular expression in the resourceExtensionsRegExp
option. By default, ttcn,ttcn3 and 3mp file extensions are recognized. Since v1.0.1, there is also support for
supplying input by means of what will be referred to as project files. These files specify a list of input files and
directories (including wildcards). The projectExtension option regulates what is to be considered a project file.
Note that this is not a regular expression option, therefore only a single value is currently supported. Since v1.0.3,
the ignoredResourceRegExp option enables the specification of regular expressions for resources within the set of
input files that will be ignored during the processing steps. Note that all resources in the input set will be parsed and
pre-processed so that definitions within ignored resources will be still be correctly resolved during the analysis
phase. The ignored resources will be skipped during the analysis and formatting steps (annotated with (Skipped) in
the output during analysis and formatting). The default setting for ignored resources is .*IGNORED.*, meaning
that resources which contain IGNORED in their full path will be skipped. There is an option to switch recursive
processing on and off (settingRecursiveProcessing). There is an option to switch aborting on (parsing) errors on
and off (settingAbortOnError). Both of these options are turned on by default. Turning them off may result in
unreliable output. Files that contain syntax errors will be analyzed only up to the point of the first syntax error
occurrence. As a result, imported definitions may not be resolved correctly, which in turn may affect some of the

quality checks. The same situation may occur if not all the resources in a test suite are processed.

Additionally, there are options to regulate the output. As as of version 0.4.1, these are grouped under
loggingConfiguration. statShowFullPath can be used to enable / disable the display of the path of a file in the
output, when a quality check is violated. Additionally, if desired, statShowFilename can be set to false to disable
outputting the filename with each output message. Further options include showMessageClass - to display the
message class (or also quality check class, e.g. naming convention, code style, etc), showDetails - to display further
details about the output message, which in the current state generally shows the internal name of the quality check
that generated the message (the internal name is generally corresponding to the configuration entry for easy
traceability), and the reference requirement ID (although the latter may be omitted in subsequent releases). There is

also an option logOutputPrefix to add a custom prefix to every log message (at the beginning of the line, before

T3Q Documentation 4 01/12/26

the path / filename). By default, this option adds three empty spaces before each logging message in the output.

There are two further settings related to the output - one that shows a brief statistics summary with basically
counters of the occurrences of each message class (statShowSummary) and one that enables / disables output

statistics about the length of the files being analyzed (in lines of code) - statShowLOC.

In the main section, there is currently one single configuration element defaultConfigurationProfile. It points to
the implicit all profile by default. The defaultConfigurationProfile is the profile that will be used if no specific
profile is provided as command-line parameter. If the specified defaultConfigurationProfile does not exist in the

configuration, T3Q will fall back on the implicit al/ profile.
Command-Line Usage

T3Q is used as follows:
t3g [options] (path | filename)+

This means that apart from any required options (see below), there always has to be at very least one parameter that
needs to be specified. This parameter is the input parameter, which can be either a path that contains the TTCN-3
files that should be analyzed, the name of an individual file, or any combination of these (a mixed list), including

wildcards.

e If a path provided as input (and recursive processing is enabled in the configuration, which is the default
setting), T3Q will recursively parse and analyze all files in this directory that match the provided file
extensions (which are specified in the configuration file). For the current path a simple "." is sufficient. If no
files match these extensions, T3Q will output a corresponding message and quit.

e [f an individual file is provided as input, then only that file will be processed.

e [f the path or filename contains spaces, you need to put the path into quotation marks or use the
auto-completion feature of the environment (provided there is one), which should take care of escaping
spaces or enclosing the complete path in quotation marks.

e [f a list of individual files and/or paths are provided as input, these will be combined and processed
together.

e [f wildcards are used, these will be expanded by the command-line environment into a list and

subsequently analyzed as such.

The following options can be provided currently and can be specified in any order:

—-—generate-config <FILE NAME> Generate a new default configuration
file at the specified file location

—--config <FILE NAME> Configuration file location

T3Q Documentation 5 01/12/26

——profile <PROFILE NAME> Configuration profile

--verbosity <LOG LEVEL> Verbosity level (currently supports
ERROR, WARNING and INFORMATION values)
——output-path <PATH> Destination path for the output (if

applicable, otherwise ignored),

overrides the profile setting

——help Show this usage information screen
——local-dependencies Generate local dependencies
——-single-core Use single core only (no parallel
processing)

——batch-resolve Use batch resolution of references
—-—analyze-usage Collect language usage information
——convert-asnl-to-schema Convert ASN.1 files to JSON schema
—-serve-asnl-compiler Start a server for converting ASN.1

files to JSON schema

——convert—-schemas Convert JSON schemas to TTCN-3

® ——help will provide brief usage information listing the expected syntax and the available options. T3Q will
stop and analyze no files when the help screen is called.

® The -—generate-config option (new as of v1.0.1) allows the generation of new default configuration files
at the location specified. T3Q will then quit.

® The --config option (new as of v0.4.2) is mandatory and has to be specified every time T3Q is run
(except when ——help or -—generate-config are used). It specifies the location of the configuration file.
Starting with v1.0.1, if no configuration file is found at the specified location, the user will be prompted to
use the appropriate option (--generate-config) to produce a new default configuration. To use the

default location from previous versions one will have to specify it manually, e.g.

t3gq --config ~/.t3q/t3g.xml

on a UNIX based system or

t3g —-—config $APPDATA%\T3Q}\t3qg.xml

on a Windows based system. The --generate-config and the --config options are mutually exclusive,
with -—generate-config having precedence, meaning that if both are specified, T3Q will still only
generate the new default configuration and quit. Please not that if the location of the configuration file
contains spaces, it has to be either enclosed in quotation marks or the auto-completion feature of the

environment has to be used to take care of escaping the spaces.

T3Q Documentation 6 01/12/26

® The --profile option overrides the defaultConfigurationProfile in the XML configuration. This means
that you can specify multiple profiles in the XML configuration and run T3Q using another existing profile
without the need to change the XML configuration. If the profile specified on the command-line does not
exist, T3Q will automatically fall back to the default profile provided in the main section of XML
configuration. In turn, if this default profile does not exist as well, T3Q will fall back to the implicit al/
profile. If the configuration profile name contains any empty spaces, they need to be escaped or the profile

name needs to be enclosed in quotation marks, depending on the environment.

® The --format option (newly introduced in v0.4.2) enables the code formatting feature (see below), which
had to be enabled by a configuration entry in the configuration profile in previous versions. That
configuration entry is now superseded by the command line option, although the output path where the
formatted output is to be placed still needs to be specified in the configuration profile (this may also be

superseded by a command line argument for convenience in future releases).

® The —-verbosity option (also newly introduced in v0.4.2) regulates the verbosity level of the output
messages based on their type. The possible values are ERROR, WARNING and INFORMATION (in an
ascending inclusive order, meaning that when INFORMATION is selected, the output will include both
ERROR and WARNING verbosity level messages as well). INFORMATION is the default setting. More

information about the message types is available in the next section.

® The --1ocal-dependencies option (newly introduced in v2.0.0b23) enables the generation of
local-dependencies. Currently, when the feature is activated, the other checks are deactivated. The location
of the generated output can be specified with the dependencyQutputPath in the configuration profile
(DOCUMENTATION by default). The output path can also be overridden by the command line argument
for the —-output-path option.

® The ——output-path option (newly introduced in v1.0.1) makes it possible to supply the output path at the
command line interface (overriding the profile setting). If affects only the code formatting feature and if it
is not used, this optionr is simply ignored. It is added purely for convenience in case the same profile has to

be used on different projects with different destination paths.

® The options ——convert-asnl-to-schema, —~—serve—-asnl-compiler, ——convert-schemas are related to

the support for ASN.1 definitions which is described in the respective section on ASN.1 Support.

® The options --single-core , ——batch-resolve, and ——analyze-usage are mostly for development,

testing, and research purposes.

The native binary executable for Windows supplied with v1.0.1 is discarded again as of v1.0.2, due to the fact that
it does not grant the desired advantages. Thus, the basic usage is reverted to the batch scripts. Starting with v1.0.2,

the batch scripts include a "hidden" —--echo option, which simply outputs the deployment specific call to the Java

T3Q Documentation 7 01/12/26

virtual machine, without any command line arguments, meaning that it makes no sense to provide any further
command line parameters besides the ——echo option. The sole purpose of this option is to output the full command
line necessary for starting the tool, which may be necessary for embedding into third party tools. This is why this
option is considered hidden (it also does not show in the standard help screen). It should not affect the general
usage of the tool. If, for whatever reason, other command line arguments are supplied together with the --echo

option, then the --echo option needs to be the first command line argument.
Output Format

The output format is configurable to a certain degree. Individual files being analyzed are listed, and if any of the

quality checks are violated an output message is provided. The message format is:
[Prefix] [[Path]FileName:]JLineNumber: MessageType: [MessageClass:]Message|[(MessageDetails)]

where whether the path is displayed can be switched on or off in the T3Q configuration using the
statShowFullPath boolean switch. If statShowFullPath is turned off, only the filename is displayed, otherwise the
path is displayed as supplied to T3Q, including the subdirectories. The filename provides the name of the file where
the violation occurred. It is also optional. Whether the filename is displayed or not is determined by the
statShowFilename boolean switch. It can be handy to reduce output clutter because all the output messages are
grouped under the files they occurred in anyway. The line number(s) indicates the line or scope of lines (separated
by "-") where the violation occurred. The message type indicates the type of message. There are currently three
types of messages WARNING - if a quality check is violated, INFORMATION in case a processing problem has
occurred, and ERROR in case a serious error (such as a parsing error) has occurred (note that currently parsing
errors may have a different format, they are in the process of being unified in format with the other message types).
After the message type, if enabled (via the showMessageClass switch), the message class will show information

about the type of quality check violated. There have been seven message classes initially defined:

® General - for general messages

® Naming Conventions - for naming conventions-related violations and messages
® Code Documentation - for documentation-related violations and messages

® Log Statements - for violations and messages related to log statements

e Structure of Data - for violations and messages related to the structure of data
® Code Style - for violations and messages related to coding style

® Test Suite Modularization - for violations and messages related to modularization

In addition there is also the Universal class, for messages that do not fall into any of the other categories. These
message classes are also used for the brief statistics summary at the end of the processing (if enabled). These
classes can be used for further filtering of the output. The improved logging interface will allow the generation of
structured file format log (such as XML), which may subsequently be used with other tools for automated

processing, filtering, and sorting based on any of the output fields.

T3Q Documentation 8 01/12/26

The message contains the details about the occurrence. Finally, the optional message details contain further details
about the occurrence, which in the general case amount to a reference to the internal name of the quality constraint

being violated, which is identical to the configuration tag.
Examlpes:
with path:

ETSI 3GPP/IWD_09wk04/7_1/MAC.ttcn: 2107-2117: WARNING: Code Style: A nested
alt statement is used! (6.3, checkNoNestedAltStatements)

without path, class, and details:

MAC.ttcn: 2107-2117: WARNING: A nested alt statement is used!
Performance and Memory Usage

Large TTCN-3 test suites tend to take quite a while to process (both for parsing and for analysis). Therefore, it is
generally a good idea to set larger memory limits (as far as the system allows) in order to improve processing time
and avoid possible memory problems. The default setting is to set the upper memory limit to 512MB, which by
today's standards is rather conservative, however, it should be sufficient for smaller to medium-sized TTCN-3 test
suites. The optimal memory limits are not easy to determine, and ways to automatically calculate and set these
depending on the available system resources, the size of the input TTCN-3 test suite, and the configuration in use
are currently being investigated. In the meantime, should processing take too long or memory errors occur, it is
advisable to set a higher upper memory limit, depending on the available system resources. This can be done by
manually editing the parameters in the start scripts (t3q.bat and t3q for Windows and Unix respectively). These
files should be edited very carefully, as mistakes may prevent T3Q from starting. Under Windows, in t3q.bat, set

the —xmx parameter in following line:
set JAVA_CMD=%JAVAS% -Xmx512m -Xssl128m -cp "$CLASSPATHS" org.etsi.t3g.T3Q
to the desired upper limit (e.g. to ~-xmx1024m for a 1GB upper memory limit).
Under Unix, the t3q file can be changed in a similar fashion by setting the —-xmx parameter in the
JAVA_CMD="$JAVA -Xmx512m -Xss128m -cp SCLASSPATH org.etsi.t3g.T3Q"
line to the desired upper limit.

In general, the optimal setting depends on the size of the TTCN-3 test suite and to a degree on the selected quality

T3Q Documentation 9 01/12/26

checks.

As of v1.0.3, a tool to guesstimate the optimal memory settings is included with T3Q. This tool is launched prior to
the actual tool execution and attempts to detect the maximum memory settings with which T3Q can be started at
that particular moment, aiming to both reduce processing time and avoid potential out of memory errors. It should
be noted that this tool can be considered in beta status, as in some edge cases it may cause T3Q to crash or to fail at
start. Such cases should be reported so that the memory detection tool can be further adjusted to avoid such issues
in the future. It is still possible to select preferred memory settings manually by adjusting the start-up scripts as

described above, where the particular line has been changed to:

set JAVA_CMD=%JAVAS% -Xmx%HEAP%m -Xss128m -cp "$CLASSPATHS$" org.etsi.t3q.T3Q
under Windows and to

JAVA_CMD="S$JAVA -Xmx $MT_CMD m -Xssl28m -cp S$SCLASSPATH org.etsi.t3qg.T3Q"

under Unix, and the s#EAP% and * sMT_cMD" parts of the line should be substituted with the desired settings.

ASN.1 Support

Initial Abstract Syntax Notation 1 (ASN.1) support has been added to T3Q in version 2.1.0b4. It relies the compiler
from [Eclipse TITAN](Zhttps://projects.eclipse.org/projects/tools.titan), which needs to be installed separately. The
path to the compiler executable needs to be specified in the corresponding configuration entry in the profile
(titanCompilerPath) which is set to compiler by default, assuming that the compiler executable is included in
the system path and readily executable from any location. If that is not the case, the correct path needs to be

specified in the profile.

Stages
The use of ASN.1 definitions is a two-stage process:
1. Collect all ASN.1 files (file extension .asn) in the input path and convert them to a JSON Schema with the
Eclipse TITAN compiler (option --convert-asnl-to-schema).
2. Generate corresponding TTCN-3 modules for each ASN.1 file from the JSON Schema produced by the

Eclipse TITAN compiler (option ——convert-schemas).

Each stage can be executed independently with the corresponding option. If both options are provided, they are

executed in the order listed above. The Eclipse TITAN compiler is only required for the first stage.

T3Q Documentation 10 01/12/26

https://projects.eclipse.org/projects/tools.titan

The first stage produces an asn. json file in the current working folder where T3Q is executed, which contains the
definitions from all the input ASN.1 files. The second stage uses the asn. json file and generate one TTCN-3 file
in the current working folder for each ASN.1 file with the following convention asn.json.<MODULE_NAME>.ttcn,
where MODULE_NAME is the generated TTCN-3 name corresponding to the ASN.1 file. If both stages are executed
together, T3Q takes care of passing on the generated files from one stage to the next. If only the second stage is
executed, then the asn. json file needs to be provided as part of the input paths for T3Q. The generated files will be

overwritten between runs.

If the ASN.1 files do not change or if Eclipse TITAN is not available on the used platform / computer, the
generated TTCN-3 files can be used directly by including them into the input path. For example, running T3Q with
the first stage on a folder that contains ModuleA.asn and ModuleB.asn (even deeply nested) produces an asn. json
file in the current working folder which contains all the definitions from both Modulea.asn and ModuleB.asn as a
JSON Schema. e.g.:

java -Xmx3g -Xss512m -jar t3qg.jar —--convert—-asnl-to-schema --config config/t3g-tfl160-next.xml

If only the first stage is selected, only the asn. json file is generated and the corresponding references cannot be
resolved yet. Therefore, it makes sense to run the first stage with only the ASN.1 files as input. It is best to add all
the necessary ASN.1 files as input rather than processing individual files one at a time, as unresolved dependencies

between ASN.1 files would result in failure to generate the asn. json file, e.g:

java —-Xmx3g -Xss512m —-jar t3qg.jar —--convert-asnl-to-schema —--config config/t3g-tfl60-next.xml
"iwd-TTCN3-B2024-06_D25wk24/NR5GC_IWD_25wk24/Common/SuppServices/Common_Definitions_Arguments.
"iwd-TTCN3-B2024-06_D25wk24/NR5GC_IWD_25wk24/Common/SuppServices/LCS_Definitions_Arguments.asr
"iwd-TTCN3-B2024-06_D25wk24/NR5GC_IWD_25wk24/Common/NR_Defs/NR_Sidelink_Preconf.asn" \
"iwd-TTCN3-B2024-06_D25wk24/NR5GC_IWD_25wk24/Common/NR_Defs/NR_PC5_RRC_Definitions.asn" \
"iwd-TTCN3-B2024-06_D25wk24/NR5GC_IWD_25wk24/Common/NR_Defs/NR_RRC_ASN1_Definitions.asn"

Given that L.cS_Definitions_Arguments depends(HlCommon_Definitions_Arguments,leaving

Common_Definitions_Arguments out will result in a failure to produce an asn. json file.

Running T3Q with the second stage, including asn. json as input produces asn. json.ModuleA.ttcn and
asn.Jjson.ModuleB.ttcn files in the current working folder, which are then added to the input paths and

considered during the evaluation of the other TTCN-3 files, e.g. using the asn. json file generated above:

java -Xmx3g -Xss512m —-jar t3qg.jar —--convert-schemas —--config config/t3g-tfl60-next.xml —--profi

produces the corresponding TTCN-3 files asn. json.Common_Definitions_Arguments.ttcn,
asn.json.NR_Sidelink_Preconf.ttcn, asn. json.LCS_Definitions_Arguments.ttcn,
asn.json.NR_PCS_RRC_Definitions.ttcn,andasn.json.NR_RRC_ASNl_Definitions.ttcn.Thesecanthenbe

used in a subsequent runs by adding them to the input paths without the need to convert the ASN.1 /JSON Schema

T3Q Documentation 11 01/12/26

again. These can also be shared with other users that do not have Eclipse TITAN available. Running T3Q with the
asn. json file in addition to the TTCN-3 files referencing the ASN.1 definitions as input with integrate the

generated files and consider them during the evaluation of the non-generated TTCN-3 files.

The generated files should be excluded from the evaluation otherwise there may be warnings related to them which
are not really relevant as the files are generated from ASN.1 and it might also take a longer to process them. The
configuration profiles should therefore include a corresponding pattern in ignoredResourceRegExp, €.2.

(.*asn[.]Jjson[.].*ttcn).

Remote usage for Stage 1

If Eclipse TITAN is not available for the first stage (e.g. due to compatibility, platform, or other concerns), T3Q has
the option --serve-asnl-compiler to provide the first stage remotely, e.g. on another computer on online server

which can run Eclipse TITAN and is reachable from the local computer. Two steps are necessary:

1. Run T3Q on the remote computer that has Eclipse TITAN installed with the option
-—serve-asnl-compiler which will expose an HTTP endpoint /compile_asn at port 3005, which
accepts posT requests carrying the ASN.1 files and provides a response carrying the resulting asn. json
file after running the Eclipse TITAN compiler.

2. Update the titanCompilerPath setting in the configuration profile to point to the endpoint on the remote
computer http://<IP or DOMAIN>:3005/compile_asn and run T3Q on the local computer that does not
have Eclipse TITAN available with the ——convert-asnl-to-schema option (or also adding the

-—convert-schemas option for an integrated run).

Instead of running Eclipse TITAN locally, T3Q will connect to the remote computer and send the ASN.1 files

included in the input paths. It can then proceed with the received asn. json file as if it were generated locally.
Limitations

There are some restrictions due to upstream issues with Eclipse TITAN (for example parameterised types), which

affect the generated schema and TTCN-3 modules. These will be investigated and resolved in future releases.

The remote functionality is experimental and not yet ready for public deployment. It is intended to bridge
circumstances where Eclipse TITAN is not available locally. If needed, authentication and further features can be

added to make it more robust and publicly deployable.
As ASN.1 files often include thousands of definitions, resolving and processing these definitions, especially in a

single file can impact the overall duration of processing. If quick feedback is desired or the duration is a concern,

preliminary check without ASN.1 support is sufficient for most quality checks as they do not rely on ASN.1

T3Q Documentation 12 01/12/26

definitions. Some checks such as checkNoUninitializedFieldsInTemplates benefit from the ASN.1 definitions

as otherwise templates for types defined in ASN.1 cannot be checked.

T3Q Quality Checks

In the following, we describe the checks that T3Q is currently able to do. We describe them by their natural name
in the section heading and with their symbolic name that is used to configure them in the configuration profile. Also
we will refer to dependent tags in the configuration profile. Please note that the provided example are not
semantically complete. They are just used to illustrate the problems. We provide sample listings where appropriate
to illustrate the checks further.

Naming Conventions

e Symbolic Name in XML Configuration: checkNamingConventions
® Dependant Tags in XML Configuration: namingConventionsConfig (the whole subsection)

This quality check analyzes the identifiers for different entities (also in different contexts) and checks whether they
comply to the supplied naming schemes. The naming schemes are defined as regular expressions in the
"namingConventionsConfig" subsection in the T3Q configuration file. The basis for the naming conventions as
well as the default values are taken from 2http://www.ttcn-3.org/NamingConventions.htm. The default settings in
the "namingConventionsConfig" subsection are listed below. The fields are self-explanatory - they are formed
following the schema "{languageElement}RegExp", where the language elements are also taken from
2http://www.tten-3.org/NamingConventions.htm and ordered in the same way as on the web page. Blank naming

rules will be ignored.

<namingConventionsConfig>
<moduleRegExp>[A-Z] .*</moduleRegExp>
<groupRegExp>[a-z].*</groupRegExp>
<dataTypeRegExp>[A-Z] .*</dataTypeRegExp>
<messageTemplateRegExp>m_[a-z].*</messageTemplateRegExp>
<messageTemplateWithWildcardsRegExp>mw_[a-z].*</messageTemplateWithWildcardsRegExp>
<derivedMessageTemplateRegExp>md_[a-z].*</derivedMessageTemplateRegExp>
<derivedMessageTemplateWithWildcardsRegExp>mdw_[a-z].*</derivedMessageTemplateWithWilc
<stfl60sendTemplateRegExp>cs_[a-z].*</stfl60sendTemplateRegExp>
<stfl60receiveTemplateRegExp>cr_[a-z].*</stfl60receiveTemplateRegExp>
<signatureTemplateRegExp>s_[a-z].*</signatureTemplateRegExp>
<portInstanceRegExp>[a-z].*</portInstanceRegExp>
<componentInstanceRegExp>[a-z].*</componentInstanceRegExp>
<constantRegExp>c_[a-z].*</constantRegExp>
<localConstantRegExp>cl_[a-z].*</localConstantRegExp>
<extConstantRegExp>cx_[a-z].*</extConstantRegExp>

<functionRegExp>f_[a-z].*</functionRegExp>

T3Q Documentation 13 01/12/26

http://www.ttcn-3.org/NamingConventions.htm
http://www.ttcn-3.org/NamingConventions.htm

<extFunctionRegExp>fx_[a-z].*</extFunctionRegExp>
<altstepRegExp>a_[a-z].*</altstepRegExp>
<testcaseRegExp>TC_.*</testcaseRegExp>
<variableRegExp>v_[a-z].*</variableRegExp>
<componentVariableRegExp>vc_[a-z].*</componentVariableRegExp>
<timerRegExp>t_[a-z].*</timerRegExp>
<componentTimerRegExp>tc_[a-z].*</componentTimerRegExp>
<moduleParameterRegExp>[A-Z] [A-Z_1-9]*</moduleParameterRegExp>
<formalParameterRegExp>p_[a-z].*</formalParameterRegExp>
<enumeratedValueRegExp>e_[a-z].*</enumeratedvValueRegExp>

</namingConventionsConfig>

Note that component and port type definitions fall under the generic category "data type" definitions and are
therefore required to follow the same naming schema (start with an uppercase letter). This may be subject to
changes in the future. Note also that variables in "for" statements are also required to follow the general naming
convention for all variables. Additionally, note that only message templates that directly include wildcards or
matching expressions are classified as "message templates with wildcards / matching expressions". This will be
subject to change in the future, in that a deep search will be performed, resolving all referenced templates and

probing them for wildcards / matching expressions.

Note also that there are additional template restriction based naming conventions checks for templates. These
reflect the STF160's notions of send and receive templates. Although the names may sound misleading, for these
naming conventions the actual usage context (i.e. send or receive statements) for the templates in question is not
taken into consideration. These rules are based on template restrictions in the definition of the templates, thus are
also content-based. The rules according to which templates are classified as send or receive templates are as

follows:

1. Templates defined with an omit or value restriction are considered send templates and shall conform to the
naming convention. If such templates have formal template parameters, then these formal template
parameters shall also be defined with the same (omit or value) template restrictions. If the formal template
parameters are not defined with the appropriate template restrictions for this type of template (i.e. the
template definition is defined inconsistently or ambiguously), an INFORMATION message will be
provided informing of the occurrence, and the naming convention will not be checked for such
occurrences.

2. Templates defined without a restriction or with a present restriction are considered receive templates and
shall conform to the naming convention. There is no restriction on the formal template parameters for such

templates.
With careful selection of the naming conventions rules, it is possible to combine the template naming conventions

for wildcards / no wildcards and STF160's send / receive templates if desired. If only STF160's send / receive

distinction is desired, then the naming convention rules for wildcards / no wildcards templates shall be left blank.

T3Q Documentation 14 01/12/26

Structure of Data
Alphabetic Ordering of Types withing Groups

¢ Symbolic Name in XML Configuration: checkTypeDefOrderInGroup
¢ Dependant Tags in XML Configuration: -

This quality check analyzes type definitions within groups in the same module and throws a warning if type
definitions within the same group are not alphabetically (or alpha-numerically, where numbers come before letters)

ordered. The ordering is case-insensitive.
Grouping of Ports and Related Messages

¢ Symbolic Name in XML Configuration: checkPortMessageGrouping
¢ Dependant Tags in XML Configuration: -

This quality check verifies that port definitions are grouped together with all the message types or signatures
referenced within the port definition. The ports and the message types / signatures related to them shall be grouped
within the same group in the same module. Limited nested grouping is allowed, where the message / signatures
may be grouped in a subgroup within the group in which the port to which they are related was defined. This can be

best illustrated by examples:

module checkPortMessageGrouping {
import from checkPortMessageGroupingExternal all;

//correct examples

group correct {

type port portl message {
in ml;
out m2, m3;

}

type port port2 message {
inout ml, m3;

}

type port port3 message {
inout m4, m3;
out ml, m2;
in integer, charstring;
out integer;

}

type port portd4d procedure {
in sml, sm2;

out sm3, sm4;

T3Q Documentation 15 01/12/26

inout smb5, sm6;
}
type port port5 mixed {
in sml, ml;
out integer;
}
group nested {
group signatures {

signature sml();

signature sm2();

signature sm3();

signature sm4 () ;

signature smb () ;

’

)
)
)
)
)
)

signature sm6 (

type integer ml;

type record m2 {
type set m3 {
type record mé {

}

//incorrect examples

group incorrect {

type port port6 message {
in ml, m2;
out m3;

}

type port port7 message {
inout checkPortMessageGroupingExternal.m5;
out mo6;

}

type port port8 procedure {
inout sml, sm2;

out sm3;

T3Q Documentation 16 01/12/26

type record m6 {

type port port9 message {

inout m6, m7;

group gl {
type set m7 {

}
type record m8 {

In the above module definition, the contents of group correct are OK, where as the contents of group incorrect
are not, because the message types are not defined under the same group where the port they are related to is
defined.

If a port is defined outside a group, it automatically means that the related message types cannot be defined within
the same group and they are not further analyzed. If a message type is defined outside a group, it also means that it
is not in the same group as the port definition it is related to. If a message type is defined within a group with the
same name as the one where the port it is related to is defined, but within a different module, it is also considered a
violation of the constraint and a warning will be thrown. If a message type related to a port type definition cannot

be resolved, it is considered a violation of the constraint as well and an appropriate warning is thrown.

The standard (first) line numbers in the output indicate the reference point - on which lines within the port type
definition has the violating message type been referenced. Additionally, next to the message type / signature name
and the port type name, location triples <startLine,moduleName,groupName> are provided to facilitate the easier

identification and localization of the elements violating the constraint.

Additionally, if nesting is present as in the above example, but does not violate the constraints, an information

message will be provided in the output to inform the user of the occurrence.

T3Q Documentation 17 01/12/26

No All Keyword in Port Type Definitions

¢ Symbolic Name in XML Configuration: checkNoAllKeywordInPortDefinitions
¢ Dependant Tags in XML Configuration: -

The check makes sure that there are no all keywords in port type definitions.
Log Statements

Log Format Must Match the Format of a Regular Expression

¢ Symbolic Name in XML Configuration: checkLogStatementFormat
¢ Dependant Tags in XML Configuration: logFormatRegExp, checklLogltemFormat,

processSubsequentLogStatementsAsOne

The check inspects the string in each log statement and matches it against a given regular expression. The
predefined regular expression corresponds to the current ETSI guidelines. The regular expression can be adapted
and customized for each profile however by changing the content of the logFormatRegExp tag in a profile of the
XML configuration. In addition, the first regexp group is matched against the name of outer compound of the log
statement, i.e., the function, testcase, or altstep name. If the first group is empty, the latter additional check will be
ignored. That means, if T3Q shall not check for the containing construct, there must be an artificial empty first

group in the specified regexp.
The current default regular expression is:
[*1{3}\s([fta]l_[a-zA-20-9]+7?) :\s (INFO|WARNING |ERROR|PASS |FAIL|INCONC|TIMEOUT) : \s.*2 [*] {3}

The checkLogStatementFormat setting enables checking the whole log statement where multiple log items within
a single log statement are joined as one. In case of string concatenation and/or use of non-chastring elements (e.g.
variable references, constant references, parameter references, or function calls), all non-charstring elements are
currently substituted by an empty string. Note that charstring elements used as parameters in e.g. function calls

currently will also be taken into consideration when checking the log statement format.

For individual log items, the checkLogltemFormat setting can be enabled instead. The same regular expression is
used for checking individual log items. Note that even though the same regular expression is used, both checks are
independent, meaning both can be enabled at the same time, with one checking the individual log items within a log
statement and the other combining those log items and checking their concatenation (ignoring non-charstring
elements as noted above). Due to possible confusion introduced by this additional check and its questionable

usefulness, it should be considered deprecated and will be removed in future releases.

T3Q Documentation 18 01/12/26

By enabling the processSubsequentLogStatementsAsOne setting, subsequent log statements can be combined
and analyzed as one (again ignoring variables within log statements), in a way similar to how log items are
analyzed together within a log statement. This setting has no effect if checkLogStatementFormat is disabled.

Note that subsequent log statements (without any other statements in between) are always combined when the
processSubsequentLogStatementsAsOne setting is enabled. This may in some cases lead to unreliable results, if,
for example, one well-formed log statement is followed by another not well-formed one, the combination of the

two may still yield a valid log statement with the setting enabled.

Note also if the processSubsequentLogStatementsAsOne setting is enabled, the subsequent log statements that
are combined together are analyzed as a bundle starting with the first log statement in the sequence, meaning that

the subsequent log statements are not analyzed individually again.

Example:

module checkLogFormatModule {
function £_1 ()
runs on myComponent {
//incorrect
log ("xx*")
test ();
//correct
log("*** £ 1: INFO: OK - random value = " & bit2str(v_random) & " ***");
test ();
//correct - function calls are ignored
log("*** £ 1: " & getMyStatus() & "INFO: OK - random value = " & bit2str(v_random) & "
test ();
//incorrect - charstring function call parameters are taken into consideration result]
//an incorrect log statement format
log("*** £ 1: " & getMyStatus("1") & "INFO: OK - random value = " & bit2str (v_random)
}
const integer c_1 := 1;
testcase t_sendMsg ()
runs on myComponent {

//this should also be correct

log("*** t_sendMsg: INFO: Unknown component " & p_variable & " ***");
£2 0

// correct

log ("*** t_sendMsg: INFO: Wrong message has been received ***")

£f_1 (); //if this statement were absent

//and subsequent log processing enabled

//the above log sattement will be analyzed

//together with the following split log statements
// also correct, given subsequent log processing is enabled

log ("*** t_sendMsg: ");

T3Q Documentation 19 01/12/26

log ("INFO: ");

log ("Wrong message has been received ***");

£21 0

//correct , given subsequent log processing is enabled
log ("*** t_sendMsg: ");

log ("INFO: ");

log (£_2 ())i

log ("Wrong message has been received ***");

£21 0

// some simple malformed log statements

//will be combined as one if subsequent log processing is enabled

log ("*** : INFORMATION: Wrong message has been received **x")

log ("** t_sendMsg: INFO: Wrong message has been received **")

log ("*** t_sendMsg22: INFO: Wrong message has been received ***")

log ("*** t_sendMsg: INFORMATION: Wrong message has been received ***")

//correct under different configuration / not combined with the above

log ("*** INFO: Wrong message has been received ***"
}
control {

//incorrect

log ("..");

//correct, if not combined with the above

log ("*** t_sendMsg22: INFO: Wrong message has been received ***"

External Function Invocation Must Be Preceded By A Log Statement

)

¢ Symbolic Name in XML Configuration: checkExternalFunctionInvocationPrecededByLogStatement

¢ Dependant Tags in XML Configuration: -

Checks whether any invocation of an external function is preceded by a log statement. The examples shall

generated warnings for all the invocations that do not have a log statement preceding them directly (tagged as bad).

Example:

module checkExternalFunctionInvocationFollowedByLogStatement {

external function fx_examplel();

external function fx_example2 (integer p_int) return integer;

external function fx_example2 (charstring p_cs) return charstring;

//inconclusive — in a constant definition
const integer c := fx_examplel(1l);
//inconclusive - unresolved

function f_examplel () {

fx_exampleO();

T3Q Documentation 20

01/12/26

//bad - at the end of

function f_examplel ()
fx_examplel();

}

//bad - followed

function f_example2 ()

fx_examplel();

a scope

{

{

log ("External Function fx_examplel called!")

}

//bad - at the end of

function f_example3 ()
fx_examplel ()

}

//bad - at the end of

function f_exampled ()

fx_examplel ()

a scope without SemiColon

{

a scope without SemiColon,

{

log ("External Function
}
//multiple
testcase tcl () runs on mtcType
//bad

fx_examplel () ;
log ("External
f_examplel ();
//good

log ("External
fx_examplel();
f_example2 ()
//bad
fx_examplel ()
//bad

fx_examplel () ;

Function

Function

fx_examplel called!")

system systemType {

fx_examplel called!")

fx_examplel called!")

log ("External Function fx_examplel called!")

control {

execute (tcl())

7

followed

Note that if an external function is called within a constant or a template definition on the module level, an

information message will be provided that in such a context it is not possible to have a log statement following it.

Note also that if a function definition cannot be resolved, a corresponding information message will be provided as

well.

T3Q Documentation

21

01/12/26

Inconclusive or Fail Setverdict Statement Must be Preceded by a Log Statement

¢ Symbolic Name in XML Configuration: checkInconcOrFailSetVerdictPrecededByLog
¢ Dependant Tags in XML Configuration: -

Checks whether setverdict statements that set inconc or fail verdicts are preceded by log statements. In the example,
the first alt statement represents the expected syntax whereas the second alt statement fails to have log statements

before the two existing fail and inconc setverdict statements.

Example:

module checkInconcOrFailSetverdictPrecededByLog {
testcase t_sendMsg () runs on myComponent {

pl.send(msg_a);

// this is as expected

alt {

[] p2.receive(msg_b) {

someOtherfunction();
log("*** t_sendMsg: INFO: Wrong message has been received ***")
setverdict (fail);

someOtherfunction () ;

[] p2.receive (msg_c) {

setverdict (pass) ;

[1] p2.receive {
log("*** t_sendMsg: INFO: Unexpected message, possibly malicious ***");

setverdict (inconc) ;

}
// here, the log statements are missing
alt {
[] p2.receive (msg_Db) {
setverdict (fail);
}
[] p2.receive(msg_c) {
setverdict (pass) ;
}
[] p2.receive {

setverdict (inconc) ;

T3Q Documentation 22 01/12/26

Code Style
There Must Be No Labels or Goto Statements

¢ Symbolic Name in XML Configuration: checkNoLabelsOrGotoStatements
¢ Dependant Tags in XML Configuration: -

The check makes sure that there are no labels and goto statements in the test code.
There Must Be No Nested Alt Statements

¢ Symbolic Name in XML Configuration: checkNoNestedAltStatements
¢ Dependant Tags in XML Configuration: maximumAllowedNestingDepth

The check makes sure that there are no alt statements nested within other alt statements or altstep definitions
beyond a given depth (specified via the maximumAllowedNestingDepth configuration tag). The topmost alt or the
enclosing altstep definition is considered of depth 0, first level nesting is of depth 1, and so on. The default nesting

depth is 0, meaning that no alt statements are allowed within other alt statements or altstep definitions.

Example:

module checNoNestedAltStatements {
altstep as_0 ()
runs on myComponent {
//nesting within an altstep
[] p2.receive (msg_b) {
}

[] p2.receive (msg_c) {

setverdict (pass);
// nested alt, level 1
alt |

[] p2.receive (msg_b) {

}

[] p2.receive (msg_c) {
setverdict (pass);

}

[] p2.receive {

}

}

[] p2.receive {
// nested alt, level 1
alt {

[] p2.receive (msg_b) {

T3Q Documentation 23 01/12/26

[] p2.receive (msg_c) {

setverdict (pass);

[] p2.receive {

// nested alt, level 2

alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {

setverdict (pass);

}
[] p2.receive {

}

}
testcase t_sendMsg ()
runs on myComponent {
//nesting within alt statement
pl.send (msg_a);
alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);
// nested alt, level 1
alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);
}
[] p2.receive {

}

}
[] p2.receive {
// nested alt, level 1
alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);
}

[] p2.receive {

T3Q Documentation 24 01/12/26

// nested alt level 2

alt |
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {

setverdict (pass);

}
[1] p2.receive {

}

Output

The output includes the scope of the alt statement (starting line - end line) and has the following format:

Alt statement nesting depth (<DEPTH>) exceeds maximum allowed nesting depth
(<maximumAllowedNestingDepth>) !

There Must Be No Permutation Keyword

¢ Symbolic Name in XML Configuration: checkNoPermutationKeyword
¢ Dependant Tags in XML Configuration: -

The check makes sure that there are no permutation keywords in the test code.

There Must Be No AnyType Keyword

¢ Symbolic Name in XML Configuration: checkNoAnyTypeKeyword
® Dependant Tags in XML Configuration: -

The check makes sure that there are no anytype keywords in the test code.

There Must Be No Modified Template of a Modified Template

¢ Symbolic Name in XML Configuration: checkNoModifiedTemplateOfModifiedTemplate
¢ Dependant Tags in XML Configuration: -

T3Q Documentation 25

01/12/26

The check makes sure that there are no modified templates are derived from modified templates. In the example,

myTemplate3 is a modified template of degree 2 and myTemplate4 is a modified template of degree 4. Both will be
reported by T3Q.

Example:

module checkNoModifiedTemplateOfModifiedTemplate ({

type record MyRecordType {
integer fieldl optional,
charstring field2,
boolean field3

}
template MyRecordType MyTemplatel := {

fieldl := 123,
field2 := "A string",
field3 := true

}
template MyRecordType MyTemplate2 modifies MyTemplatel

fieldl := omit,
field2 := "A modified string"

}

// MyTemplate2 is already a modified template

template MyRecordType MyTemplate3 modifies MyTemplate2
fieldl := 22

}

// this one is even modified two times

template MyRecordType MyTemplated4 modifies MyTemplate3
field3 := false

// NESTED TEMPLATES

type record MyRecordType2 {
integer fieldl optional,
charstring field2,

boolean field3,
MyRecordType nestedTemplate

}
template MyRecordType MyNestedTemplatel := {

fieldl := 123,

field2 := "A string",

field3 := true,

nestedTemplate :={fieldl:= 1, field2:="a", field3:=true}

}

template MyRecordType MyNestedTemplate2 modifies MyNestedTemplatel

field2 := "B string",

nestedTemplate :={fieldl:= 2, field2:="b", field3:=true}

}

template MyRecordType MyNestedTemplate3 modifies MyNestedTemplate?2

T3Q Documentation 26

01/12/26

field2 := "C string",
nestedTemplate :={fieldl:= 3, field2:="c", field3:=true}

Local Definitions Must Be Declared at the Beginning of Testcases, Functions, Altsteps, and
Component Definitions, in a Specified Order

¢ Symbolic Name in XML Configuration: checkLocalDefinitionsComeFirst
® Dependant Tags in XML Configuration: localDefinitionTypes

This is an evolved version of the check for variables only in the same context (declared before any other
statements). In this version, not only variables, but also local constants and timers can be considered (if
configured). Additionally, the order of occurrence of these three classes of local definitions can be specified and
checked for. With the help of the help of the localDefinitionTypes configuration tag, which contains a list string
tags, the contents and the order of local definitions can be specified. The default configuration contains four
possible types of local definitions: VarInstance (variables), ConstDef (local constants), TimerInstance (local
timers), and PortInstance (port instances, only within components), configured in this order, meaning that
constants are expected to be declared after all variables and before all timers (and ports, in the context of

component definitions):

<localDefinitionTypes>
<string>VarInstance</string>
<string>ConstDef</string>
<string>TimerInstance</string>
<string>PortInstance</string>

</localDefinitionTypes>

This order can be changed by moving the configured entries up and down the list. If timers and ports are to be

disregarded, for example, then the whole configuration tags shall be omitted, so that the configuration will be:

<localDefinitionTypes>
<string>VarInstance</string>
<string>ConstDef</string>

</localDefinitionTypes>

Only the local definition types provided in the default configuration can be used, and only if spelled correctly,

meaning that case-sensitivity matters in this context ("constdef" hence will not be recognized).

Note that control part definitions are not analyzed. This will be subject to change, where control part definitions

will be analyzed as well.

T3Q Documentation 27 01/12/26

Import Statements Must Be Declared at the Beginning of Modules

¢ Symbolic Name in XML Configuration: checklmportsComeFirst
¢ Dependant Tags in XML Configuration: -

Similarly to "Variables Must Be Declared at the Beginning of Testcases, Functions and Altsteps”, this check makes

sure that all import statements are always at the beginning of any module.

There Must Be No Duplicated Identifiers On the Module Level

¢ Symbolic Name in XML Configuration: checkNoDuplicatedModuleDefinitionldentifiers
¢ Dependant Tags in XML Configuration: -

This check will make sure there are no identical identifiers for definitions on the module level among the analyzed

modules (regardless of type).
There Must Be No Unused Definitions On the Module Level

¢ Symbolic Name in XML Configuration: checkZeroReferencedModuleDefinitions
¢ Dependant Tags in XML Configuration: zeroReferencedModuleDefinitionsExcludedRegExp

This check will make sure there are no unused definitions on the module level among the analyzed modules,
including references through imports. References within import statements however will be disregarded, meaning
that if a definition is imported, but never used, it will be considered an unused definition as well. Group definitions
are excluded from this check. Additionally, through the zeroReferencedModuleDefinitionsExcludedRegExp
configuration tag, a regular expression can be specified to allow certain modules (based on the module name) to be
excluded from this check. The regular expression is empty by default, meaning that all modules are considered by
default.

There Must Be No Inline Templates

¢ Symbolic Name in XML Configuration: checkNolnlineTemplates
¢ Dependant Tags in XML Configuration: -

This check will make sure there are no inline templates used in the analyzed modules.
There Must Be No Over-specific Runs On Clauses

¢ Symbolic Name in XML Configuration: checkNoOverSpecificRunsOnClauses

T3Q Documentation 28 01/12/26

¢ Dependant Tags in XML Configuration: recursionInCheckNoOverSpecificRunsOnClauses,
aliasInCheckNoOverSpecificRunsOnClauses (since v2.0.0b27)

This check will make sure no over-specific runs on clauses are used. An over-specific runs on clause is when none
of the component element definitions (variables, timers, constants, and ports) of the component used in the runs on
clause are referenced within the body of the function or alststep with the runs on clause. If at least one of the
component element definitions is referenced within the body of the function or altstep, then no problem is reported.
If the recursionInCheckNoOverSpecificRunsOnClauses setting is enabled (which it is by default), also the
functions and altsteps referenced within the body of the current construct will be inspected. This is due to the fact

that often wrapper functions are used that do not make direct use of the component element definitions themselves.

As of v1.0.3, test cases are not considered in this check, due to a change request based on the notion that test cases
are required to have a runs on clause, regardless of whether they actually utilize any of the component element
definitions of the MTC.

Example:

module checkNoOverSpecificRunsOn {
//global const for validation
const someType someGlobalConst := 21;
//component in question

type component someComponent {

var someType someVarName := 2;

var someType someOtherVarName := 2, someAnotherVarName := 4;
var charstring someCharStringVar := "xyz";

var template someType someTemplateVarName := 3;

const someType someConstName := 1;

const integer somelIntegerConstName := 42;

const someOtherType someConstName?2 someModuleParameterName2, someConstName3
timer someTimer;

port somePortType somePortInstance;

type component someComponent?2 extends someComponent {
port somePortType somePortInstance?2;
}
//good
function someFunction ()
runs on someComponent {
//some references to component definitions here

someTimer.start (10.0);

//bad
function someOverSpecificFunction ()
runs on someComponent {

//ay(); //this will make it valid

T3Q Documentation 29 01/12/26

Some

//wrapperfunction(); //this will make it wvalid
wrapperFunction(); //unresolvable due to a typo - proper error message provide
//no references to component definitions here
}
//irrelevant
function someGenericFunction () runs on someComponent {
somePortInstance.send ("x");
//no relation
}
//good
//a tricky example with a referenced function that uses the relevant fields
//wraper function
function wrapperfunction ()
runs on someComponent {
//function that uses the component definitions

someFunction ();

//bad
testcase tcx ()
runs on someComponent {

//ay (); //this will make it valid

//good
//tricky wrapper example
altstep ax ()
runs on someComponent {
var integer a := someFunction();
(1 ay O
(1 ay O

//good

altstep ay ()

runs on someComponent {
var integer a := someFunction();
[] someTimer.timeout ({

wrapperfunction () ;

//tricky cyclic call sequences
function f1() runs on someComponent {
£20);
£30)
}
function f2() runs on someComponent {
£1()
£4 ()
}

function £3() runs on someComponent {

T3Q Documentation 30 01/12/26

£2()
}

function f4 () runs on someComponent {

}

As of v2.0.0b27 an additional setting aliasinCheckNoOverSpecificRunsOnClauses is provided. It enables the

special treatment of component "alias" type definitions (component type definitions without any owned definitions

that extend another component type and inherit its definitions). If this setting is enabled (which it is by default), a

function or an altstep specified to run on a given component type will only raise a warning if none of the definitions

of the component type(s) that this component type extends directly (i.e. not considering the components extended

by those components recursively) are used within the function or altstep. It supersedes the previously introduced

extendsInCheckNoOverSpecificRunsOnClauses setting.

For example:

//base component
type component componentWithDefinition {

timer definedTimer;

//extension with own definitions
type component directExtension extends componentWithDefinition {

var integer directExtensionVariable;

//multi alias / extension ("pure", without own definitions)

type component indirectAlias extends directExtension {

//multi alias / extension ("pure", without own definitions)

type component pureAlias extends componentWithDefinition {

//always good — base component
function someFunctionOnBaseComponent ()
runs on componentWithDefinition {

definedTimer.start (10.0);

//bad - no definition from directExtension used
function someFunctionOnDirectAlias ()
runs on directExtension {

definedTimer.start (10.0);

T3Q Documentation 31 01/12/26

//bad - no definition from aliased directExtension used
function someFunctionOnMultiAlias ()
runs on indirectAlias {

definedTimer.start (10.0);

//good - definition from aliased directExtension is used (directAliasVariable)
function someFunctionOnMultiAliasWithReferenceToVariable ()
runs on indirectAlias {

definedTimer.start (10.0)

7
directExtensionVariable := 1;

//good - definition from aliased componentWithDefinition is used (definedTimer)
function someFunctionOnPureAlias ()
runs on pureAlias {

definedTimer.start (10.0);

There Must Be No Unused Imports

¢ Symbolic Name in XML Configuration: checkNoUnusedImports
¢ Dependant Tags in XML Configuration: -

This is a rather complex quality check, that seeks to identify unused imports. As a first step it checks whether the
imported module exists. If it does not exist, it is either because the imported module is not a part of the analyzed
input, or because the name of the imported module has been misspelled. Whatever the case, if the module cannot be
resolved, a corresponding message is provided and the check for that particular import statement is finished. If the

module can be resolved, depending on the context, the following situations are checked:

1. If an all keyword is used in a non-type-restrictive manner (i.e. not associated to a certain definition type),
then it is checked whether there is at least one reference of any module definition from the imported
module within the importing module. Whether there are exceptions specified in the import statement makes
no difference in this case, because in such a scenario, it is no longer possible to have references pointing
back to the imported definition and thus the results of this check remain correct.

2. If a non-specific type import is used (i.e. an all keyword is preceded by definition type keyword), then it is
checked whether there is at least one reference of any module definition of the given type from the
imported module within the importing module. Same conditions apply as in the non-type-restrictive use of

the all keyword. If all groups are to be considered, then only the definitions within groups are considered,

T3Q Documentation 32 01/12/26

those outside groups are not considered.
3. If a specific type import is used (i.e. a definition type keyword, followed by a (list of) identifiers), several
checks are performed:

1. Check if the identifier is resolvable. If it is not it means that either the definition is not present
within the imported module or the identifier is perhaps misspelled.

2. If the identifier is resolvable, it is checked whether the definition is actually within the imported
module. It may be the case that the definition has already been imported from another module (see
also Documentation/T3Q/Quality-Checks/Code-Style), in which case a corresponding message is
provided and the actual references for that identifier are not checked any further. It may also be the
case that the definition has already been imported from another module, but also does not exist in
the module from which it is attempted to be imported again (the definition has been moved
perhaps?!), in which case another corresponding message is provided, and no further analysis of
the actual references is performed.

3. Finally, if the identifier is uniquely and correctly resolvable, is is checked whether there are any
references to that imported definition within the importing module. If a specific group is imported,
it is checked whether any of the definitions within that group are referenced in the importing

module instead.

Note that currently this check is rather computationally expensive and thus disabled by default. Once suitable

optimizations are added, it will be re-enabled by default.

There Must Be No Unused Formal Parameters

¢ Symbolic Name in XML Configuration: checkNoUnusedFormalParameters

¢ Dependant Tags in XML Configuration: -

This check makes sure there are no unused formal parameters. There are several peculiarities associated with this

quality check:

¢ External functions are excluded from this check since their formal parameters can never be used within
their TTCN-3 definitions

¢ In the case of modified template definitions, all the formal parameters defined in the modified template
(currently matched by name only) are not checked again in the modifying template. Only the additional
formal parameters defined in the modifying template are checked in such a case.

¢ Type parametrization is currently left out, since type parametrization is moved to a package in TTCN-3
v4.1.1.

¢ In the case of cyclic call sequences, a corresponding INFORMATION message will be generated.

T3Q Documentation 33 01/12/26

There Must Be No Unused Local Definitions

¢ Symbolic Name in XML Configuration: checkNoUnusedLocalDefinitions
¢ Dependant Tags in XML Configuration: -

This check makes sure there are no unused local definitions. This covers local constants, timers, variables, ports,
template variables and local template definitions. Currently component definitions, function definitions, altstep

definitions and testcase definitions are analyzed, as well as module control parts.

There Must Be No Uninitialised Local Variables

¢ Symbolic Name in XML Configuration: checkNoUninitialisedVariables
¢ Dependant Tags in XML Configuration: checkNoUninitialisedVariablesExclude

This check makes sure there are no uninitialised local variables. This covers local variables declared within
statement blocks or module control parts. Variables declared within components are not considered as they may or
may not be initialised depending on which other behaviour constructs have been executed. Instead, the data flow
analysis is performed strictly within the scope of the top-level statement block. In the following example, the state
of the various variables declared within a function is described for each statement using comments directly above

the statement.

function f_ConditionalSpec() {
var integer v_sO0;
var integer v_sl;
var integer v_s2 := 1;
var integer v_s3;
var integer v_s4;

var integer v_s5;

//v_s2 1is initialised upon declaration -> no warning
if (v_s2 == 1) {
//v_s3 is not initialised —-> warning
//v_s0 initialised within the conditional after this statement

v_s0 := v_s3 + 1;

//v_sl is not initialised -> warning
//v_s2 1is initialised -> no warning
//v_s3 initialised within the conditional after this statement

v_s3 := v_s2 + 1 + v_sl;

//v_s3 is initialised above —-> no warning
//v_s4 initialised within the conditional after this statement
v_s4 := v_s3 + 1;

} else {

T3Q Documentation 34 01/12/26

//v_s2 is initialised —-> no warning
//v_s4 initialised within the else branch after this statement

v_s4d := v_s2 + 1;

//v_s3 1is only initialised within one of the possible paths -> warning
//v_s4 is initialised within both possible paths (within all branches of the conditior

v_s5 := v_s3 + v_s4;

For variables initialised within branching behaviour, such as if-else if-else constructs, alt statements, and call
statements, the data flow analysis evaluates whether each branch directly initialises the variables with absolute
certainty. If the variable is initialised in only some of the branches, then a warning is raised as it cannot be ensured
that a variable will be initialised before use during execution. This also applies to nested branches. For loops, it
cannot be ensured that a variable will be initialised as a loop can be skipped if the loop condition evaluates to false.
In such case, variables initialised within the loop are considered as such in the subsequent statements within the
loop, however, for statements outside the loop, the variable is still considered to be not initialised (unless there is

explicit initialisation outside the loop).

The checkNoUninitialisedVariablesExclude setting can be used to filter out warnings for variables of certain
types. The meta-types enumerated, union, record of, record, set of, set, can be listed in order to exclude warnings
for all variables of the corresponding meta-type from the output, e.g. exclude all variables of all record types.
Additionally, user defined concrete types can be listed as well, so that only warnings for variables of a specific
type, e.g. a specific record type, are excluded from the output. In the following example configuration, all warnings
for all variables of set and set of types, as well as for all variables of the type MyRecordType are excluded from the

output.

<checkNoUninitialisedVariablesExclude >
<string>set</string>
<string>set of</string>
<string>MyRecordType</string>

</checkNoUninitialisedVariablesExclude >

The meta-types enumerated, union, record of, record, set of, set, are currently set to be excluded by default when a

new configuration profile is generated.
There Must Be No Literals

¢ Symbolic Name in XML Configuration: checkNoLiterals
¢ Dependant Tags in XML Configuration: -

T3Q Documentation 35 01/12/26

This check makes sure there are no literals used, except in module parameters, template definitions, and constant
definitions. Note that while in both module-level constants and local constants literals are permitted, in the case of
templates, only template definitions at the module level can contain literals. Note also that currently matching
symbols, boolean values, verdicts, omit-values, enumerated values, and address-values are not considered literals.

This may be a subject to change.
There Must Be No ValueOf Operations for Values

¢ Symbolic Name in XML Configuration: checkNoValueOfForValues
¢ Dependant Tags in XML Configuration: -

This check makes sure there are no valueof operations on "pure” values. This currently covers references to local

variables, formal parameters, component variables, return types of functions, and defined templates.

function f_Work () {
var float v_ToConvert := 2.0;
var float v_ValueCms;
var template float v_ToConvertTemplate := 2.0;
//Being a value already the call to valueof is redundant —-> warning
v_ValueCms := f_ConvertInchesToCm(valueof (v_ToConvert));
//Should be ok -> no warning
v_ValueCms := f_ConvertInchesToCm(valueof (v_ToConvertTemplate));
}
function f_Work (
float p_ToConvert,
template float p_ToConvertTemplate
) return template float {
var float v_ValueCms;
//Being a value already the call to valueof is redundant —-> warning
v_ValueCms := f_ConvertInchesToCm(valueof (p_ToConvert));
//Should be ok -> no warning

v_ValueCms := f_ConvertInchesToCm(valueof (p_ToConvertTemplate));

There Must Be No AnyValueOrNone in List Values

¢ Symbolic Name in XML Configuration: checkNoAnyValueOrNonelnListValues
¢ Dependant Tags in XML Configuration: -

This check makes sure there are no AnyValueOrNone assignments to "list" values (assignments to values within a

template or value of a record of or set of type). This currently covers references to local variables, formal

parameters, component variables, return types of functions, and defined templates.

T3Q Documentation 36 01/12/26

type record MyListElement_Type {
integer x

/.

type set MySetElement_Type {
integer x

VY

type record of MyListElement_Type MyList_Type;
type set of MySetElement_Type MySet_Type;

type component exampleComponent {
var template (omit) MyListElement_Type cv_MyListElement2 := {};
var template (present) MyList_Type cv_MyList;

function f_FunctionReturningElementl (
// ..

) return template MyListElement_Type {
/] ..

function f_Examples (
template MyListElement_Type p_MyListElement,
template (present) MyListElement_Type prp_MyListElement,
MyListElement_Type pv_MyListElement

) runs on exampleComponent {

var MyListElement_Type v_MyListElementl := {};

var template (omit) MyListElement_Type v_MyListElement2 := {};
var template (omit) MySetElement_Type v_MySetElement2 := {};
var template (value) MyListElement_Type v_MyListElement3 := {};
var template (present) MyListElement_Type v_MyListElement4 := {};
var template MyListElement_Type v_MyListElement5 := {};

var template (present) MyList_Type v_MyList;
var template (value) MyList_Type v_MyListV;
var template (present) MySet_Type v_MySet;

var integer i := 1;

v_MyList[i] := v_MyListElementl; // ok (SingleVarInstance)
v_MyList[i] := v_MyListElement2; // shall cause an error/warning
v_MyList[i] := cv_MyListElement2; // shall cause an error/warning
cv_MyList[i] = cv_MyListElement2; // shall cause an error/warning
cv_MyList[i] := v_MyListElement2; // shall cause an error/warning
v_MySet[i] := v_MySetElement2; // shall cause an error/warning
v_MyList[i] := v_MyListElement3; // ok (restriction=value)
v_MyList[i] := v_MyListElement3.x // ok (restriction=value) + field
v_MyList[i] := v_MyListElement4; // ok (restriction=present)

T3Q Documentation 37 01/12/26

v_MyList[1i

v_MyListElement5;

//

shall cause an error/warning

(1]
v_MyList[i] = cr_MyListElementl; // shall cause an error/warning
v_MyList[i] = cr_MyListElement2; // ok (restriction=value)
v_MyList[i] := cr_MyListElement3 (1) // ok (restriction=value) + paramt
v_MyList[i] = v_MyListV[1] // ok (restriction=value) + field
v_MyList[i] := valueof (cr_MyListElement3 (1)) // ok (valueOf)
v_MyList[i] := f_FunctionReturningElementl () ; // shall cause an error/warning
//extra: parameters
v_MyList[i] = p_MyListElement; // shall cause an error/warning
v_MyList[i] := pv_MyListElement; // ok (FormalValuePar)
v_MyList[i] := prp_MyListElement; // ok (restriction=present)
//extra: direct
v_MyList[i] := omit; // shall cause an error/warning
v_MyList[i] := *; // shall cause an error/warning
}
template (omit) MyListElement_Type cr_MyListElementl := {};
template (value) MyListElement_Type cr_MyListElement2 := {};
template (value) MyListElement_Type cr_MyListElement3 (integer p) := {};
const MyListElement_Type ccr_MyListElement2 := {};
template (present) MyList_Type cr_MyList (
MyListElement_Type p_Paraml, // ok (FormalValuePar)
template (value) MyListElement_Type p_Param2, // ok (restriction=value)
template (omit) MyListElement_Type p_Param3, // shall cause an error/warning
template (present) MyListElement_Type p_Param4, // ok (restriction=present)
template MyListElement_Type p_Paramb // shall cause an error/warning
) =
/]
p_Paraml,
VA
p_Param?2,
/]
p_Param3, // shall cause an error
/]
p_Parami4,
/..
{x:=p_Param2.x}, // ok, not directly assigned to 11
/]
p_Paramb, // shall cause an error
/...
cr_MyListElementl, // shall cause warning
/]
cr_MyListElement2, // ok (restriction=value)
/]
cr_MyListElement3 (1), // ok (restriction=value) + paran

/e

T3Q Documentation

38

01/12/26

ccr_MyListElement2 // ok (constant)
}i

function f_Extras () {

var template MyListElement_Type v_Element := *;

var template MyListElement_Type v_Element_e := {};

var template (present) MyListElement_Type v_Element_p := {};

var template MyList_Type v_Listl := { -, v_Element }; // shall cause an error/
var template MyList_Type v_List2 := { -, —, omit}; // shall cause an error/
var template MyList_Type v_Listl := { -, v_Element_e }; // shall cause an error/
var template MyList_Type v_Listl := { -, v_Element_p }; // shall be fine?

// BUT

var template MyList_Type v_List3 := { cr_MyListElement2, * }; // is allowed i.e. shall
var template MyList_Type v_List3p := { cr_MyListElement3 (1), * }; // is allowed i.e. =
var template MyList_Type v_List4d := { * }; // is allowed too
v_List4[0] := * //shall still cause an error/warning

var template MyListElement_Type v_Element_r := v_Element_e; // should be ignored?
var template MyList_Type v_Listl := { -, v_Element_r }; // shall cause an error/

// this is not checked as it is indirect

var template (present) MyListElement_Type v_Element_rp := v_Element_e;

//should be i

var template MyList_Type v_Listl := { -, v_Element_rp }; // shall cause an error

// —> not possible dire

// -> in case earlier i

//extra

var template (present) MyList_Type v_MyList;

var template (value) MyList_Type v_MyListV;

v_MyList := {}; // ok
{v_MyListV[1]}; // ok

v_MyList

There Must Be No Uninitialized Fields in Templates

¢ Symbolic Name in XML Configuration: checkNoUninitializedFieldsInTemplates
¢ Dependant Tags in XML Configuration: checkNoUninitializedFieldsInTemplatesRecursion

This check makes sure there are no uninitialized fields in templates. This currently covers declared templates (on

the module level only) for structured types declared in TTCN-3 and ASN.1 (see ASN.1 Support for details).

//manually defined types

type record EventDefinitions {
EventIds eventlds,
integer fieldint,
boolean fieldbool,
integer fieldextmandat,

integer fieldextopt optional,

T3Q Documentation 39 01/12/26

boolean fieldextboolopt optional
}
//this is probably a union?
type record EventId {
Al eventAl
}
type record Al {
boolean fieldeventAl
}
type record of EventId EventIds

template (value) EventDefinitions cs_EventDefinitions_eventAl_ Errors (
boolean p_FieldeventAl := true ,
integer p_Fieldint := 0 ,
boolean p_Fieldbool := true , //integer p_Fieldextmandat := 1,
integer p_Fieldextopt := 2
/*,
template (omit) boolean p_Fieldextboolopt := omit
*/
) = A
eventIds := {
eventAl := {
fieldeventAl := p_FieldeventAl
}
by
fieldint := p_Fieldint ,
fieldbool := p_Fieldbool ,
//fielextmandat := p_Fieldextmandat, -> warning for missing field
fieldextopt := p_Fieldextopt
//fieldextboolopt := p_Fieldextboolopt —-> warning for missing field

//correct version: should not raise warinings
template (value) EventDefinitions cs_EventDefinitions_eventAl (
boolean p_FieldeventAl := true ,
integer p_Fieldint := 0 ,
boolean p_Fieldbool := true,
integer p_Fieldextmandat := 1 ,
integer p_Fieldextopt := 2 ,
template (omit) boolean p_Fieldextboolopt := omit

eventIds := {

eventAl := {
fieldeventAl := p_FieldeventAl

by

T3Q Documentation 40 01/12/26

fieldint := p_Fieldint ,

fieldbool := p_Fieldbool ,
fieldextmandat := p_Fieldextmandat ,
fieldextopt := p_Fieldextopt ,
fieldextboolopt := p_Fieldextboolopt

By default only the first level of modified templates is checked in case a template modifies another template or is
assigned to another template, and the field specifications in the base template are considered. With the option
checkNoUnititializedFieldsInTemplatesRecursion multiple levels of modified or assigned templates are
considered.

module checkNoUnititializedFieldsInTemplatesRecursion ({
type record R {
integer f1,
integer £f2,

integer £3

template R A := {fl := 1} //base template, not fully-specified -> warning

template R Bl modifies A := {f2 := 2, £3:= 3} //fully-specified, inherits f1 -> no warninc
template R B2 modifies A := {f2 := 2} //not fully-specified, inherits fl, misses £f3 -> war
template R Cl modifies Bl := {fl := 3} //fully-specified, inherits £f2, £3 -> no warning
template R C2 modifies B2 := {£f3 := 3} //fully-specified, inherits f1 from A, f2 from B2

//=> no warning if checkNoUnititializedFieldsInTemplatesRecursion is true

//-> warning if checkNoUnititializedFieldsInTemplatesRecursion is false (only f2 from B2 c
template tr t_tr_mod_base_full_assigned (charstring p_c) := t_tr_mod_base_full("a", {}) //nc
template tr t_tr_mod_base_full (charstring p_c) modifies t_tr_base_full := {

common := (p_c) //no warning

template tr t_tr_base_full (integer p_ind) := {

common := "yes", //no warning
indication := p_ind,
version := 1

template tr t_tr_ref_ref mod_c(charstring p_c) modifies t_tr_ref_ref := {

common := (p_c) //no warning

T3Q Documentation 41 01/12/26

template tr t_tr_ref _mod_c(charstring p_c) modifies t_tr_ref := {

common := (p_c) //no warning

template tr t_tr_ref ref mod(charstring p_c) modifies t_tr_ref_ ref := {

version := (p_c) //warning

template tr t_tr_ref mod(charstring p_c) modifies t_tr_ref := {

version := (p_c) //warning
}
template tr t_tr_ref_ref (integer p_1i) := t_tr_ref(p_1i) //warning
template tr t_tr_ref (integer p_1i) := t_tr_base(p_i) //warning
template tr t_tr_ref_no_par (integer p_1i) := t_tr_base //warning

template tr t_tr_base(integer p_ind) := {

// common := "yes", //common not specified
indication := p_ind,
version := 1

type record tr {
charstring common,
integer indication,

integer version

template rx_sub rx_sub_par (template rx_sub p_rx) := p_rx //skipped

template rx_sub t_rx := {
version := 1,
extensions := "x1",

size := 3

type rx rx_sub

type record rx {
integer version,
charstring extensions,

integer size

T3Q Documentation 42 01/12/26

There Must Be No Zero or Multiple Fields in Union Templates

¢ Symbolic Name in XML Configuration: checkNoZeroOrMultipleFieldsInUnionTemplates
¢ Dependant Tags in XML Configuration: checkNoUninitializedFieldsInTemplatesRecursion

This check makes sure there are no zero or multiple initialized fields in union templates. This currently covers
declared templates (on the module level only) for union types declared in TTCN-3 and in ASN.1 (see ASN.1
Support for details).

module unions {
template tu tu_func_mod modifies tu_func := {
//skipped

template tu tu_func_ref := tu_func()
//skipped
template tu tu_func_ref np := tu_func

template tu tu_func := f_tu()

//no warning (no way to determine) -> skipped
template tu tu_func := tu_base()
template tu tu_base_mod_empty modifies tu_base := {

//no warning

template tu tu_base_mod_c modifies tu_base := {

common := "b" //no warning, same

template tu tu_base_mod modifies tu_base := {

version := 0 //warning more than one / different

template tu tu_base := {

common := "a"

function f_tu() return tu {

return tu_base

type union tu {

charstring common,

T3Q Documentation 43 01/12/26

integer indication,

integer version

By default only the first level of modified templates is checked in case a template modifies another template or is
assigned to another template, and the field specifications in the base template are considered. With the option
checkNoUnititializedFieldsInTemplatesRecursion multiple levels of modified or assigned templates are
considered. While the TTCN-3 semantics state that in the case of modified templates the newly assigned field
replaces the field specified in the base template, the warning from this check can still be beneficial in highlighting

cases where that may be unintentional.

Test Suite Modularization: Module Containment

Modules, whose identifiers contain any of the following substrings, shall contain only certain definition types,
permissible for the particular type of module. These substrings will be referred to as "module restrictions"” in the
following, to establish a unified terminology and simplify the descriptions. All module restrictions are
case-sensitive. The configuration entries are following the schema

"check{ModuleRestriction }ModuleContainmentCheck", where "ModuleRestriction" is to be substituted with the
particular substring. Apart from the permissible definition types, all modules allow the presence of import and
group definitions. The output for the quality checks indicates the location/scope of the definition (starting line - end
line) violating the particular constraints and the type of module restriction that has been recognized and applied
(based on the substring that has been found in the module name). Note that, if a module name contains multiple
restrictions, all the checks will be applied individually. This means that a "TypesAndValuesAndTemplates" module
will first be checked for the permissible definition types for a "TypesAndValues" module and throw a warning on
any other definition (be it a definition of the permissible definitions for a "!Template" module), and then the other

way around for the permissible definitions in a "!Templates" module.

Note that control part definitions are allowed in all the following module containment checks. This may be subject

to changes in the future (restricted to the "TestControl" modules only).

The details for the individual module restrictions are outlined below.

TypesAndValues Module Must Contain Only Type and Constant Definitions

¢ Symbolic Name in XML Configuration: checkTypesAndValuesModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring TypesAndValues in its name will be analyzed. Only type and constant

definitions are permitted within such a module. The example below illustrates a module which will produce

T3Q Documentation 44 01/12/26

warnings if this quality check is enabled. The first three definitions are type and constant definitions. However,
templates, testcases, and functions must not be present in such a module. Thus, these last three module definitions
will be reported as not of the permissible types.

Example:

module checkTypesAndValuesModuleContainmentCheckBad {

import from LibCommon_time all;

// good part

type record MyRecordType {
integer fieldl optional,
charstring field2,
boolean field3

type integer myInt;

const myInt myIntValue := 2;
// bad part

template MyRecordType MyTemplatel := {
fieldl := 123,
field2 := "A string",
field3 := true

}

testcase t_sendMsg () runs on myComponent {

}

function myfunc() {
}
group g_1{

function f_1 () {
}

Notes: Component and port type definitions also fall under the generic "type definitions" term. Therefore, they are

also allowed in a "TypesAndValues" module. This may be subject to changes in the future.

T3Q Documentation 45 01/12/26

Templates Module Must Contain Only Template Definitions

¢ Symbolic Name in XML Configuration: checkTemplatesModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring Templates in its name will be analyzed. Similar to the "TypesAndValues"
module restriction, only template definitions are permitted within such a module. The example below illustrates a
module which will produce warnings if this quality check is enabled. The first three definitions are template
definitions (one is within a group). The constant and function definitions that follow, however, are not allowed

within a "Templates" module and therefore will produce a warning.
Example:

module checkTemplatesModuleContainmentBad {

import from LibCommon_time all;

// good part, only templates
template MyRecordType t_1 := {
fieldl := 1,
field2 := "a",
field3 :=true

template integer t_2 := (0,1,2,3,4,5,6,7);

group GroupedDefs{
template integer t_3 :=(0 .. 10);
//bad part

const integer c_1 := 2;

//bad part
function f£_2 () {
}

Functions Module Must Contain Only Function and Altstep Definitions

¢ Symbolic Name in XML Configuration: checkFunctionsModuleContainmentCheck

¢ Dependant Tags in XML Configuration: checkFunctionsModuleContainmentCheckAllowExtFunction

T3Q Documentation 46 01/12/26

Any module that contains the substring Functions in its name will be analyzed. Similar to the other module
restrictions, only function and altstep definitions are permitted within such a module. The example below illustrates
a module which will produce warnings if this quality check is enabled. Additionally, external function definitions
may (by default) or may not be allowed within such modules, depending on whether

checkFunctionsModuleContainmentCheckAllowExtFunction is enabled or not.

Example:

module checkFunctionsModuleContainmentBad {
import from LibCommon_time all;
// good part, only functions and altsteps
function f_1 () {
}
altstep a_1 () |
}
//bad part
type record typeA {
integer fieldl,
boolean feild2
}
group GroupedDefs {
function f_2 () {
}
altstep a_2 () {
}
const integer c_1 := 1;
}
//configurable part
//depending on the configuration external functions
//may (default) or may not be allowed

external function ef_1 ();

Testcases Module Must Contain Only Testcase and Function Definitions That Are Referenced In
Start Statements

¢ Symbolic Name in XML Configuration: checkTestcasesModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring Tesfcases in its name will be analyzed. Similar to the other module
restrictions, only testcase and function definitions that are referenced in start statements are permitted within such a

module. The example below illustrates a module which will produce warnings if this quality check is enabled.

Example:

T3Q Documentation 47 01/12/26

module checkTestcasesModuleContainmentBad {

import from LibCommon_sync all;

// bad module
function f_1() runs on component_1({

}

testcase tc_1() runs on component_1{
var component_1 ptcO := component_1l.create;
ptcO.start (£_1());
ptcO.start (£_0()); // defined elsewhere
f_3(); //does not count — not in a start statement
}
//not used in a start statement
function f_3() runs on component_1({

}

//not a testcase or a function\

const integer c_1 := 0;

group GroupedDefs{

//not used in a start statement

function f_4 () runs on component_1 return float{
}
function f_2 () runs on component_1{
var component_1 ptcl := component_1l.create;

ptcl.start (£_1());

ptcl.start (£_0(f_4())); // does not count - used as a nested parameter
f_4(); //does not count - not in a start statement
timer t;
t.start (f_4()); //does not count - used in a timer start operation
}
testcase tc_2() runs on component_1{
var component_1 ptc2 := component_l.create;

ptc2.start (£_1());
ptc2.start (£_0()); // defined elsewhere

T3Q Documentation 48

01/12/26

ModuleParams Module Must Contain Only Modulepar Definitions

¢ Symbolic Name in XML Configuration: checkModuleParamsModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring ModuleParams in its name will be analyzed. Similar to the other module
restrictions, only modulepar definitions are permitted within such a module. The example below illustrates a

module which will produce warnings if this quality check is enabled.

Example:

module checkModuleParamsModuleContainmentBad {

import from LibCommon_time all;

// good part, only module parameters

modulepar integer mp_1;

modulepar {
integer mp_2;

charstring mp_3;
//bad part
const integer c_1 := 1;
group GroupedDefs{

modulepar integer mp_4;

const integer c_2 := 2;

Interface Module Must Contain Only Component, Port, and Type Definitions

¢ Symbolic Name in XML Configuration: checkInterfaceModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring Inferface in its name will be analyzed. Similar to the other module
restrictions, only component, port, and type definitions are permitted within such a module (or generally speaking
any type definition). The example below illustrates a module which will produce warnings if this quality check is

enabled.

Example:

T3Q Documentation 49 01/12/26

module checkInterfaceModuleContainmentBad ({

import from LibCommon_time all;
// bad module

type component component_1 {

}

type port port_1 message(
in integer
}

const integer c_1 := 0;

group g_1{
type component component_2 {
}

type port port_2 message(

out integer

const integer c_2 := 1;

//are control parts permissible?

control {

TestSystem Module Must Contain Only Component and Port Definitions

¢ Symbolic Name in XML Configuration: checkTestSystemModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring TestSystem in its name will be analyzed. Similar to the other module
restrictions, only component type definitions are permitted within such a module. The example below illustrates a

module which will produce warnings if this quality check is enabled.

Example:

module checkTestSystemModuleContainmentBad {

import from LibCommon_time all;

// bad module, port definitions as well

T3Q Documentation 50 01/12/26

type component component_1 {

}

type port port_1 message(

in integer

group g_1{
type component component_2 {

}
type port port_2 message(

out integer

//are control parts permissible?

control {

TestControl Module Must Contain Only Control Part Definition

¢ Symbolic Name in XML Configuration: checkTestControlModuleContainmentCheck
¢ Dependant Tags in XML Configuration: -

Any module that contains the substring TestControl in its name will be analyzed. Similar to the other module
restrictions, only control part definition is permitted within such a module. The example below illustrates a module

which will produce warnings if this quality check is enabled.

Example:

module checkTestControlModuleContainmentBad {

import from LibCommon_time all;
//bad part
modulepar integer mp_1;

modulepar {
integer mp_2;
charstring mp_3;

}

T3Q Documentation 51 01/12/26

const integer c_1 := 1;

group GroupedDefs{
modulepar integer mp_4;

const integer c_2 := 2;

control {

Test Suite Modularization: Importing Libraries
TypesAndValues Modules Must Always Import From Certain Modules

¢ Symbolic Name in XML Configuration: checkTypesAndValuesModulelmportsLibNames
¢ Dependant Tags in XML Configuration: typesAndValuesImportsLibNamesRegExp,
typesAndValuesImportsLibNamesExcludedRegExp

The check inspects whether a module that contains TypesAndValues (case-sensitive) in its name imports from
modules with certain names (e.g. libraries - LibCommon). The names of the required imports are specified by
means of regular expressions. The default setting is . *?LibCommon. *, meaning that definitions shall be imported
from modules that contain LibCommon in their name (regardless of the position of this substring). This setting is
stored under the typesAndValuesImportsLibNamesRegExp tag in the configuration.

Additionally, with the help of the typesAndValuesImportsLibNamesExcludedRegExp setting, certain modules
can be excluded from this check (e.g. modules whose identifier also contains LibCommon, such as

ILibCommon_TypesAndValues). The default value for this setting is . *?LibCommon. *.

The message text in the output for this quality check is: Required imports
("StypesAndValuesImportsLibNamesRegExp") not found!

Testcases Module Must Always Import From Modules Prefixes with !LibCommon_Sync

¢ Symbolic Name in XML Configuration: checkTestcasesModuleImportsLibCommon_Sync
® Dependant Tags in XML Configuration: -

T3Q Documentation 52 01/12/26

The check inspects whether a module that contains Testcases (case-sensitive) in its name imports from modules that

are prefixed with the string /LibCommon_Sync (case sensitive!).

Similar conditions as in "TypesAndValues Module Must Always Import From Modules Prefixes with
LibCommon" apply to this quality check as well. Modules whose identifiers contain "!LibCommon_Sync" are
excluded (regardless of where the substring is placed). The configuration for this quality check will also be

extended in the future to allow customized selection of the required prefix and the exclusion criteria.

Module Size

¢ Symbolic Name in XML Configuration: checkModuleSize
® Dependant Tags in XML Configuration: maximumAllowedModuleSizeInBytes

This check tests whether modules exceed a given reference size (specified by the
maximumAllowedModuleSizeInBytes configuration entry). The size as the tag suggests specifies the maximum

allowed module size in bytes. The default reference size is 10000 bytes (~10KB).

Note that the module size is the subject of analysis and not the file size (accounting for the fact that there may be
multiple modules defined within the same file as well). Thus, this quality check may not be violated, even if a file
exceeds the maximum allowed size, if there are multiple smaller modules defined within that file, which do not

themselves violate the maximum allowed size constraint.

T3Q Code Formatting Feature

Starting with v0.1.1, the T3Q tool provides a feature for the automated formatting of TTCN-3 code. The feature is
disabled by default and has to be manually enabled in the configuration file. This is due to the fact that the user also
has to specify an output path where the formatted versions of the TTCN-3 files will be written. The output setting
allows for relative paths (the directory structure will be recreated in the directory from which T3Q was called), or
absolute paths (the directory structures will be recreated in a fixed destination path, independent from the location
where T3Q was started). Both ways to specify the output path can be used to overwrite the original TTCN-3

resources.

Below is an extract of the settings relevant to the code formatting feature from the configuration file:

<pathFormattedOutputPath>FORMATTED</pathFormattedOutputPath>
<formattingParameters>
<tabs>false</tabs>
<unixNewline>false</unixNewline>
<spacesBetweenAssignment>true</spacesBetweenAssignment>
<spaceAfterComma>true</spaceAfterComma>

<KRstyle>true</KRstyle>

T3Q Documentation 53 01/12/26

<newlineBeforeRunsOn>true</newlineBeforeRunsOn>
<newlineBeforeSystem>true</newlineBeforeSystem>
<newlineBeforeReturn>true</newlineBeforeReturn>
<newlineBeforeExceptionSpec>true</newlineBeforeExceptionSpec>
<newlineBeforeFormalPar>true</newlineBeforeFormalPar>
<newlineAfterFormalParList>true</newlineAfterFormalParList>
<spacesAroundParentheses>true</spacesAroundParentheses>
<spacesCount>2</spacesCount>
<linesBetweenModules>2</linesBetweenModules>
<linesAfterControlPart>1</linesAfterControlPart>
<linesAfterModuleDefinition>1</linesAfterModuleDefinition>
<linesBetweenImportDefinitions>1</linesBetweenImportDefinitions>

</formattingParameters>

¢ <pathFormattedOutputPath>FORMATTED</pathFormattedOutputPath> - Output path for the
formatted TTCN-3 files, can be relative or absolute

¢ <formattingParameters - Subsection with the formatting parameters

+ <tabs>false</tabs> - Use tabs or spaces for indentation, default set to spaces

¢ <unixNewline>false</unixNewline> - Use UNIX new line style, this may or may not have any

visible effects on the output, depending on the editors and operating systems used

¢ <spacesBetweenAssignment>true</spacesBetweenAssignment> - Add a space around
assignment operators
<spaceAfterComma>true</spaceAfterComma> - Add a space after comma
<KRstyle>true</KRstyle> - Use Kernighan and Ritchie formatting style
<newlineBeforeRunsOn>true</newlineBeforeRunsOn> - Add a new line before runs on clauses
<newlineBeforeSystem>true</newlineBeforeSystem> - Add a new line before system clauses

<newlineBeforeReturn>true</newlineBeforeReturn> - Add a new line before return clauses

® & & & oo o

<newlineBeforeExceptionSpec>true</newlineBeforeExceptionSpec> - Add a new line before

exception clauses

¢ <newlineBeforeFormalPar>true</newlineBeforeFormalPar> - Add a new line before formal
parameters, unless a single parameter is used

¢ <newlineAfterFormalParList>true</newlineAfterFormalParList> - Add a new line after
formal parameter lists (of more than one parameter)

¢ <spacesAroundParentheses>true</spacesAroundParentheses> - Add a space around

parentheses

<spacesCount>2</spacesCount> - Indentation depth

<linesBetweenModules>2</linesBetweenModules> - Number of lines between modules

<linesAfterControlPart>1</linesAfterControlPart> - Number of lines after control parts

* & o o

<linesAfterModuleDefinition>1</linesAfterModuleDefinition> - Number of lines after module
definitions
¢ <linesBetweenImportDefinitions>1</linesAfterModuleDefinition> - Number of lines between

import definitions (affects only subsequent import definitions)

T3Q Documentation 54 01/12/26

¢ </formattingParameters>

Upon successfully saving a formatted file, an output message is generated providing the location of the file.

Low-Level Dependencies (migrated from T3Dv1 to T3Qv2)

The generated low-level dependencies serve (currently) exclusively for custom processing by third party tools for
purposes such as slicing or markup of definitions related to a particular module definition (e.g. approved / locked
definitions, etc.). That is the generated content for the low-level dependencies is only in an intermediate XML
format and there is no HTML view for it (since it is roughly an abstracted version of the main view). Some form of

HTML presentation may become available in future releases.

The low-level dependencies can be thought of as a blend between an abstracted version of the main view and a
low-level version of the import view, featuring a compact representation of the low-level dependencies at the
module definition (element) level - it contains all the module definitions and all the known elements referenced

directly within each module definition.

The structure of the low-level dependencies intermediate representation features a list of all elements, where for

each element the following pieces of information are available:
¢ A unique ID of the element so that it can be uniquely referenced
® The name of the element as per its identifier
¢ The top-level type of the element (e.g. type, function, altstep, etc.)
¢ Its definition start location (the line where the definition of the element starts)
¢ The name of the containing module where the element is defined
¢ The name of the file containing the module where the element is defined
o A list of the element IDs for all the elements referenced within the current element

Upon recursive resolution a dependency graph can be created for a set of related elements.

More details about the technical side of the low-level dependencies can be found in the technical documentation.

T3Q Misc Features

Several features of general usability significance are implemented to improve the usage and automation of T3Q.

T3Q Documentation 55 01/12/26

List Imported Module Names

¢ Symbolic Name in XML Configuration: featureListImportedModuleNames
¢ Dependant Tags in XML Configuration:

If enabled, all imported modules will be listed in the form of information messages, with the following format:

[[<ImportingFilenamePath>]<ImportingFilename>]]<LineNumber>: Information: Importing

from module "<ImportedModuleName>"...

By default, this feature is disabled.

List Imported File Names

¢ Symbolic Name in XML Configuration: featureListImportedModuleFileNames
¢ Dependant Tags in XML Configuration:

If enabled, all imported modules and the files they are located in (if the files are part of the input) will be listed in

the form of information messages, with the following format:

[[<ImportingFilenamePath>]<ImportingFilename>]]<LineNumber>: Information: Importing

from module "<ImportedModuleName>" located in "<ImportedModuleFileName>"...

By default, this feature is disabled.
List Importing Module Names

¢ Symbolic Name in XML Configuration: featureListimportingModuleNames
¢ Dependant Tags in XML Configuration:

If enabled, all modules importing the currently analyzed module will be listed in the form of information messages,

with the following format:

[[<CurrentFilenamePath>]<CurrentFilename>]]<LineNumber>: Information: Module

"<CurrentlyAnalyzedModuleName>"! is imported in module "<ImportingModuleName>"...

By default, this feature is disabled.

T3Q Documentation 56 01/12/26

List Importing File Names

¢ Symbolic Name in XML Configuration: featureListImportingModuleFileNames
¢ Dependant Tags in XML Configuration:

If enabled, all modules importing the currently analyzed module and the files they are located in will be listed in the

form of information messages, with the following format:

[[<CurrentFilenamePath>]<CurrentFilename>]]<LineNumber>: Information: Module
"<CurrentlyAnalyzedModuleName>" is imported in module "<ImportingModuleName>"

located in "<ImportingFileName>"!

By default, this feature is disabled.

T3Q Documentation 57 01/12/26

	tmpuJQvtltracpdf

