Log Statements
Log Format Must Match the Format of a Regular Expression

¢ Symbolic Name in XML Configuration: checklLLogStatementFormat
¢ Dependant Tags in XML Configuration: logFormatRegExp, checkLogltemFormat,

processSubsequentL.ogStatementsAsOne

The check inspects the string in each log statement and matches it against a given regular expression. The
predefined regular expression corresponds to the current ETSI guidelines. The regular expression can be adapted
and customized for each profile however by changing the content of the logFormatRegExp tag in a profile of the
XML configuration. In addition, the first regexp group is matched against the name of outer compound of the log
statement, i.e., the function, testcase, or altstep name. If the first group is empty, the latter additional check will be
ignored. That means, if T3Q shall not check for the containing construct, there must be an artificial empty first

group in the specified regexp.
The current default regular expression is:
[*1{3}\s([fta]l_[a-zA-20-9]+7?) :\s (INFO|WARNING | ERROR|PASS |FAIL|INCONC|TIMEOUT) :\s.*2 [*] {3}

The checkLogStatementFormat setting enables checking the whole log statement where multiple log items within
a single log statement are joined as one. In case of string concatenation and/or use of non-chastring elements (e.g.
variable references, constant references, parameter references, or function calls), all non-charstring elements are
currently substituted by an empty string. Note that charstring elements used as parameters in e.g. function calls

currently will also be taken into consideration when checking the log statement format.

For individual log items, the checkLogItemFormat setting can be enabled instead. The same regular expression is
used for checking individual log items. Note that even though the same regular expression is used, both checks are
independent, meaning both can be enabled at the same time, with one checking the individual log items within a log
statement and the other combining those log items and checking their concatenation (ignoring non-charstring
elements as noted above). Due to possible confusion introduced by this additional check and its questionable

usefulness, it should be considered deprecated and will be removed in future releases.

By enabling the processSubsequentLogStatementsAsOne setting, subsequent log statements can be combined
and analyzed as one (again ignoring variables within log statements), in a way similar to how log items are
analyzed together within a log statement. This setting has no effect if checkLogStatementFormat is disabled.

Note that subsequent log statements (without any other statements in between) are always combined when the
processSubsequentlLogStatementsAsOne setting is enabled. This may in some cases lead to unreliable results, if,

for example, one well-formed log statement is followed by another not well-formed one, the combination of the

1 01/11/26

two may still yield a valid log statement with the setting enabled.

Note also if the processSubsequentLogStatementsAsOne setting is enabled, the subsequent log statements that

are combined together are analyzed as a bundle starting with the first log statement in the sequence, meaning that

the subsequent log statements are not analyzed individually again.

Example:

module checkLogFormatModule {
function £_1 ()

runs on myComponent {

}

//incorrect

log ("***")

test ();

//correct

log("*** £ 1: INFO: OK - random value = " & bit2str(v_random) & " ***");

test ();

//correct - function calls are ignored

log("*** £ 1: " & getMyStatus() & "INFO: OK - random value = " & bit2str(v_random) & "
test ();

//incorrect - charstring function call parameters are taken into consideration resulti
//an incorrect log statement format

log("*** £ 1: " & getMyStatus("1") & "INFO: OK - random value = " & bit2str (v_random)

const integer c_1 := 1;

testcase t_sendMsg ()

runs on myComponent {

//this should also be correct

log("*** t_sendMsg: INFO: Unknown component " & p_variable & " ***");
£22 (O

// correct

log ("*** t_sendMsg: INFO: Wrong message has been received ***")

£f.1 (); //if this statement were absent

//and subsequent log processing enabled
//the above log sattement will be analyzed
//together with the following split log statements

// also correct, given subsequent log processing is enabled

log ("*** t_sendMsg: ");

log ("INFO: ");

log ("Wrong message has been received ***");

£21 0

//correct , given subsequent log processing is enabled
log ("*** t_sendMsg: ");

log ("INFO: ");

log (£_2 ())i

log ("Wrong message has been received ***");

£21 0

2 01/11/26

// some simple malformed log statements

//will be combined as one if subsequent log processing is enabled

"xx%k : INFORMATION: Wrong message has been received ***")

log
log
log
log

//correct under different configuration / not combined with the above

log
}

(
(
(
(

(

control {

"** t_sendMsg: INFO: Wrong message has been received **")

"xHEA t__sendMsg22:

INFO: Wrong message has been received ***"

)

"*+% t_sendMsg: INFORMATION: Wrong message has been received ***")

"x*x* INFO: Wrong message has been received ***");

//incorrect

log

//correct,

log

(

(

noon),.

"x*xx £ sendMsg22:

if not combined with the above

INFO: Wrong message has been received ***"

External Function Invocation Must Be Preceded By A Log Statement

)

¢ Symbolic Name in XML Configuration: checkExternalFunctionInvocationPrecededByLogStatement

¢ Dependant Tags in XML Configuration: -

Checks whether any invocation of an external function is preceded by a log statement. The examples shall

generated warnings for all the invocations that do not have a log statement preceding them directly (tagged as bad).

Example:

module checkExternalFunctionInvocationFollowedByLogStatement {

external function fx_examplel();

external function fx_example2 (integer p_int) return integer;

external function fx_example2 (charstring p_cs) return charstring;

//inconclusive — in a constant definition
const integer c := fx_examplel (1);
//inconclusive — unresolved

function f_examplel ()

}

fx_exampleO () ;

{

//bad - at the end of a scope

function f_examplel ()

}

fx_examplel ();

//bad - followed

function f_example?2 ()

fx_examplel();

{

{

log ("External Function fx_examplel called!")

01/11/26

//bad - at the end of a scope without SemiColon

function f_example3 () {
fx_examplel ()

}

//bad - at the end of a scope without SemiColon,

function f_exampled () {
fx_examplel ()
log ("External Function
}
//multiple
testcase tcl () runs on mtcType
//bad
fx_examplel();
log ("External Function
f_examplel () ;
//good
log ("External Function
fx_examplel () ;
f_example?2 ()
//bad
fx_examplel ()
//bad
fx_examplel ();
log ("External Function
}
control {

execute (tcl ());

fx_examplel called!")

system systemType {

fx_examplel called!")

fx_examplel called!")

fx_examplel called!")

followed

Note that if an external function is called within a constant or a template definition on the module level, an

information message will be provided that in such a context it is not possible to have a log statement following it.

Note also that if a function definition cannot be resolved, a corresponding information message will be provided as

well.

Inconclusive or Fail Setverdict Statement Must be Preceded by a Log Statement

¢ Symbolic Name in XML Configuration: checkInconcOrFailSetVerdictPrecededByLog

¢ Dependant Tags in XML Configuration: -

Checks whether setverdict statements that set inconc or fail verdicts are preceded by log statements. In the example,

the first alt statement represents the expected syntax whereas the second alt statement fails to have log statements

before the two existing fail and inconc setverdict statements.

Example:

01/11/26

module checkInconcOrFailSetverdictPrecededByLog {
testcase t_sendMsg() runs on myComponent {

pl.send (msg_a);

// this is as expected

alt {

[] p2.receive (msg_b) {
someOtherfunction();
log("*** t_sendMsg: INFO: Wrong message has been received ***")
setverdict (fail);
someOtherfunction();

[] p2.receive(msg_c) {

setverdict (pass) ;

[] p2.receive {
log("*** t_sendMsg: INFO: Unexpected message, possibly malicious ***");

setverdict (inconc) ;

}
// here, the log statements are missing
alt {
[] p2.receive (msg_b) {
setverdict (fail);
}
[] p2.receive(msg_c) |
setverdict (pass);
}
[] p2.receive {

setverdict (inconc) ;

5 01/11/26

	tmpGNk2iCtracpdf

