Code Style
There Must Be No Labels or Goto Statements

¢ Symbolic Name in XML Configuration: checkNoLabelsOrGotoStatements
¢ Dependant Tags in XML Configuration: -

The check makes sure that there are no labels and goto statements in the test code.
There Must Be No Nested Alt Statements

¢ Symbolic Name in XML Configuration: checkNoNestedAltStatements
¢ Dependant Tags in XML Configuration: maximumAllowedNestingDepth

The check makes sure that there are no alt statements nested within other alt statements or altstep definitions
beyond a given depth (specified via the maximumAllowedNestingDepth configuration tag). The topmost alt or the
enclosing altstep definition is considered of depth 0, first level nesting is of depth 1, and so on. The default nesting

depth is 0, meaning that no alt statements are allowed within other alt statements or altstep definitions.

Example:

module checNoNestedAltStatements {
altstep as_0 ()
runs on myComponent {
//nesting within an altstep
[] p2.receive (msg_b) {
}

[] p2.receive (msg_c) {

setverdict (pass);
// nested alt, level 1
alt |

[] p2.receive (msg_b) {

}

[] p2.receive (msg_c) {
setverdict (pass);

}

[] p2.receive {

}

}

[] p2.receive {
// nested alt, level 1
alt {

[] p2.receive (msg_b) {

1 01/11/26

[] p2.receive (msg_c) {

setverdict (pass);

[] p2.receive {

// nested alt, level 2

alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {

setverdict (pass);

}
[] p2.receive {

}

}
testcase t_sendMsg ()
runs on myComponent {
//nesting within alt statement
pl.send (msg_a);
alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);
// nested alt, level 1
alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);
}
[] p2.receive {

}

}
[] p2.receive {
// nested alt, level 1
alt {
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);
}

[] p2.receive {

5 01/11/26

// nested alt level 2
alt |
[] p2.receive (msg_b) {
}
[] p2.receive (msg_c) {
setverdict (pass);

}

[] p2.receive {

}

Output
The output includes the scope of the alt statement (starting line - end line) and has the following format:

Alt statement nesting depth (<DEPTH>) exceeds maximum allowed nesting depth
(<maximumAllowedNestingDepth>) !

There Must Be No Permutation Keyword

¢ Symbolic Name in XML Configuration: checkNoPermutationKeyword
¢ Dependant Tags in XML Configuration: -

The check makes sure that there are no permutation keywords in the test code.

There Must Be No AnyType Keyword

¢ Symbolic Name in XML Configuration: checkNoAnyTypeKeyword
® Dependant Tags in XML Configuration: -

The check makes sure that there are no anytype keywords in the test code.

There Must Be No Modified Template of a Modified Template

¢ Symbolic Name in XML Configuration: checkNoModifiedTemplateOfModifiedTemplate
¢ Dependant Tags in XML Configuration: -

3 01/11/26

The check makes sure that there are no modified templates are derived from modified templates. In the example,

myTemplate3 is a modified template of degree 2 and myTemplate4 is a modified template of degree 4. Both will be
reported by T3Q.

Example:

module checkNoModifiedTemplateOfModifiedTemplate ({

type record MyRecordType {
integer fieldl optional,
charstring field2,
boolean field3

}
template MyRecordType MyTemplatel := {

fieldl := 123,
field2 := "A string",
field3 := true

}

template MyRecordType MyTemplate2 modifies MyTemplatel
fieldl := omit,
field2 := "A modified string"

}

// MyTemplate2 is already a modified template

template MyRecordType MyTemplate3 modifies MyTemplate2
fieldl := 22

}

// this one is even modified two times

template MyRecordType MyTemplated4 modifies MyTemplate3
field3 := false

// NESTED TEMPLATES
type record MyRecordType2 {
integer fieldl optional,
charstring field2,

boolean field3,
MyRecordType nestedTemplate

}
template MyRecordType MyNestedTemplatel := {

fieldl := 123,

field2 := "A string",

field3 := true,

nestedTemplate :={fieldl:= 1, field2:="a", field3:=true}

}

template MyRecordType MyNestedTemplate2 modifies MyNestedTemplatel

field2 := "B string",

nestedTemplate :={fieldl:= 2, field2:="b", field3:=true}

}

template MyRecordType MyNestedTemplate3 modifies MyNestedTemplate?2

4

01/11/26

field2 := "C string",
nestedTemplate :={fieldl:= 3, field2:="c", field3:=true}

Local Definitions Must Be Declared at the Beginning of Testcases, Functions, Altsteps, and
Component Definitions, in a Specified Order

¢ Symbolic Name in XML Configuration: checkLocalDefinitionsComeFirst

® Dependant Tags in XML Configuration: localDefinitionTypes

This is an evolved version of the check for variables only in the same context (declared before any other
statements). In this version, not only variables, but also local constants and timers can be considered (if
configured). Additionally, the order of occurrence of these three classes of local definitions can be specified and
checked for. With the help of the help of the localDefinitionTypes configuration tag, which contains a list string
tags, the contents and the order of local definitions can be specified. The default configuration contains four
possible types of local definitions: VarInstance (variables), ConstDef (local constants), TimerInstance (local
timers), and PortInstance (port instances, only within components), configured in this order, meaning that
constants are expected to be declared after all variables and before all timers (and ports, in the context of

component definitions):

<localDefinitionTypes>
<string>VarInstance</string>
<string>ConstDef</string>
<string>TimerInstance</string>
<string>PortInstance</string>

</localDefinitionTypes>

This order can be changed by moving the configured entries up and down the list. If timers and ports are to be

disregarded, for example, then the whole configuration tags shall be omitted, so that the configuration will be:

<localDefinitionTypes>
<string>VarInstance</string>
<string>ConstDef</string>

</localDefinitionTypes>

Only the local definition types provided in the default configuration can be used, and only if spelled correctly,

meaning that case-sensitivity matters in this context ("constdef" hence will not be recognized).

Note that control part definitions are not analyzed. This will be subject to change, where control part definitions

will be analyzed as well.

5 01/11/26

Import Statements Must Be Declared at the Beginning of Modules

¢ Symbolic Name in XML Configuration: checklmportsComeFirst
¢ Dependant Tags in XML Configuration: -

Similarly to "Variables Must Be Declared at the Beginning of Testcases, Functions and Altsteps”, this check makes

sure that all import statements are always at the beginning of any module.

There Must Be No Duplicated Identifiers On the Module Level

¢ Symbolic Name in XML Configuration: checkNoDuplicatedModuleDefinitionldentifiers
¢ Dependant Tags in XML Configuration: -

This check will make sure there are no identical identifiers for definitions on the module level among the analyzed

modules (regardless of type).

There Must Be No Unused Definitions On the Module Level

¢ Symbolic Name in XML Configuration: checkZeroReferencedModuleDefinitions
¢ Dependant Tags in XML Configuration: zeroReferencedModuleDefinitionsExcludedRegExp

This check will make sure there are no unused definitions on the module level among the analyzed modules,
including references through imports. References within import statements however will be disregarded, meaning
that if a definition is imported, but never used, it will be considered an unused definition as well. Group definitions
are excluded from this check. Additionally, through the zeroReferencedModuleDefinitionsExcludedRegExp
configuration tag, a regular expression can be specified to allow certain modules (based on the module name) to be
excluded from this check. The regular expression is empty by default, meaning that all modules are considered by
default.

There Must Be No Inline Templates

¢ Symbolic Name in XML Configuration: checkNolnlineTemplates
¢ Dependant Tags in XML Configuration: -

This check will make sure there are no inline templates used in the analyzed modules.

There Must Be No Over-specific Runs On Clauses

¢ Symbolic Name in XML Configuration: checkNoOverSpecificRunsOnClauses

6 01/11/26

¢ Dependant Tags in XML Configuration: recursionInCheckNoOverSpecificRunsOnClauses,

aliasInCheckNoOverSpecificRunsOnClauses (since v2.0.0b27)

This check will make sure no over-specific runs on clauses are used. An over-specific runs on clause is when none

of the component element definitions (variables, timers, constants, and ports) of the component used in the runs on

clause are referenced within the body of the function or alststep with the runs on clause. If at least one of the

component element definitions is referenced within the body of the function or altstep, then no problem is reported.

If the recursionInCheckNoOverSpecificRunsOnClauses setting is enabled (which it is by default), also the

functions and altsteps referenced within the body of the current construct will be inspected. This is due to the fact

that often wrapper functions are used that do not make direct use of the component element definitions themselves.

As of v1.0.3, test cases are not considered in this check, due to a change request based on the notion that test cases

are required to have a runs on clause, regardless of whether they actually utilize any of the component element

definitions of the MTC.

Example:

module checkNoOverSpecificRunsOn {
//global const for validation
const someType someGlobalConst := 21;
//component in question

type component someComponent {

var someType someVarName := 2;
var someType someOtherVarName := 2, someAnotherVarName
var charstring someCharStringVar := "xyz";

var template someType someTemplateVarName :=

const someType someConstName := 1;
const integer somelIntegerConstName := 42;
const someOtherType someConstName2 := someModuleParameterName2,

timer someTimer;

port somePortType somePortInstance;

type component someComponent?2 extends someComponent {

port somePortType somePortInstance?2;
}
//good

function someFunction ()

runs on someComponent {

//some references to component definitions here

someTimer.start (10.0);

//bad
function someOverSpecificFunction ()
runs on someComponent {

//ay(); //this will make it valid

7

someConstName3

01/11/26

Some

//wrapperfunction(); //this will make it wvalid
wrapperFunction(); //unresolvable due to a typo - proper error message provide
//no references to component definitions here
}
//irrelevant
function someGenericFunction () runs on someComponent {
somePortInstance.send ("x");
//no relation
}
//good
//a tricky example with a referenced function that uses the relevant fields
//wraper function
function wrapperfunction ()
runs on someComponent {
//function that uses the component definitions

someFunction ();

//bad
testcase tcx ()
runs on someComponent {

//ay (); //this will make it valid

//good
//tricky wrapper example
altstep ax ()
runs on someComponent {
var integer a := someFunction();
(1 ay O
(1 ay O

//good

altstep ay ()

runs on someComponent {
var integer a := someFunction();
[] someTimer.timeout ({

wrapperfunction () ;

//tricky cyclic call sequences
function f1() runs on someComponent {
£20);
£30)
}
function f2() runs on someComponent {
£1()
£4 ()
}

function £3() runs on someComponent {

8 01/11/26

£2()
}

function f4 () runs on someComponent {

}

As of v2.0.0b27 an additional setting aliasinCheckNoOverSpecificRunsOnClauses is provided. It enables the

special treatment of component "alias" type definitions (component type definitions without any owned definitions

that extend another component type and inherit its definitions). If this setting is enabled (which it is by default), a

function or an altstep specified to run on a given component type will only raise a warning if none of the definitions

of the component type(s) that this component type extends directly (i.e. not considering the components extended

by those components recursively) are used within the function or altstep. It supersedes the previously introduced

extendsInCheckNoOverSpecificRunsOnClauses setting.

For example:

//base component
type component componentWithDefinition {

timer definedTimer;

//extension with own definitions
type component directExtension extends componentWithDefinition {

var integer directExtensionVariable;

//multi alias / extension ("pure", without own definitions)

type component indirectAlias extends directExtension {

//multi alias / extension ("pure", without own definitions)

type component pureAlias extends componentWithDefinition {

//always good — base component
function someFunctionOnBaseComponent ()
runs on componentWithDefinition {

definedTimer.start (10.0);

//bad - no definition from directExtension used
function someFunctionOnDirectAlias ()
runs on directExtension {

definedTimer.start (10.0);

9 01/11/26

//bad - no definition from aliased directExtension used
function someFunctionOnMultiAlias ()
runs on indirectAlias {

definedTimer.start (10.0);

//good - definition from aliased directExtension is used (directAliasVariable)
function someFunctionOnMultiAliasWithReferenceToVariable ()
runs on indirectAlias {

definedTimer.start (10.0)

7
directExtensionVariable := 1;

//good - definition from aliased componentWithDefinition is used (definedTimer)
function someFunctionOnPureAlias ()
runs on pureAlias {

definedTimer.start (10.0);

There Must Be No Unused Imports

¢ Symbolic Name in XML Configuration: checkNoUnusedImports
¢ Dependant Tags in XML Configuration: -

This is a rather complex quality check, that seeks to identify unused imports. As a first step it checks whether the
imported module exists. If it does not exist, it is either because the imported module is not a part of the analyzed
input, or because the name of the imported module has been misspelled. Whatever the case, if the module cannot be
resolved, a corresponding message is provided and the check for that particular import statement is finished. If the

module can be resolved, depending on the context, the following situations are checked:

1. If an all keyword is used in a non-type-restrictive manner (i.e. not associated to a certain definition type),
then it is checked whether there is at least one reference of any module definition from the imported
module within the importing module. Whether there are exceptions specified in the import statement makes
no difference in this case, because in such a scenario, it is no longer possible to have references pointing
back to the imported definition and thus the results of this check remain correct.

2. If a non-specific type import is used (i.e. an all keyword is preceded by definition type keyword), then it is
checked whether there is at least one reference of any module definition of the given type from the
imported module within the importing module. Same conditions apply as in the non-type-restrictive use of

the all keyword. If all groups are to be considered, then only the definitions within groups are considered,

10 01/11/26

those outside groups are not considered.
3. If a specific type import is used (i.e. a definition type keyword, followed by a (list of) identifiers), several
checks are performed:

1. Check if the identifier is resolvable. If it is not it means that either the definition is not present
within the imported module or the identifier is perhaps misspelled.

2. If the identifier is resolvable, it is checked whether the definition is actually within the imported
module. It may be the case that the definition has already been imported from another module (see
also Documentation/T3Q/Quality-Checks/Code-Style), in which case a corresponding message is
provided and the actual references for that identifier are not checked any further. It may also be the
case that the definition has already been imported from another module, but also does not exist in
the module from which it is attempted to be imported again (the definition has been moved
perhaps?!), in which case another corresponding message is provided, and no further analysis of
the actual references is performed.

3. Finally, if the identifier is uniquely and correctly resolvable, is is checked whether there are any
references to that imported definition within the importing module. If a specific group is imported,
it is checked whether any of the definitions within that group are referenced in the importing

module instead.

Note that currently this check is rather computationally expensive and thus disabled by default. Once suitable

optimizations are added, it will be re-enabled by default.

There Must Be No Unused Formal Parameters

¢ Symbolic Name in XML Configuration: checkNoUnusedFormalParameters

¢ Dependant Tags in XML Configuration: -

This check makes sure there are no unused formal parameters. There are several peculiarities associated with this

quality check:

¢ External functions are excluded from this check since their formal parameters can never be used within
their TTCN-3 definitions

¢ In the case of modified template definitions, all the formal parameters defined in the modified template
(currently matched by name only) are not checked again in the modifying template. Only the additional
formal parameters defined in the modifying template are checked in such a case.

¢ Type parametrization is currently left out, since type parametrization is moved to a package in TTCN-3
v4.1.1.

¢ In the case of cyclic call sequences, a corresponding INFORMATION message will be generated.

11 01/11/26

There Must Be No Unused Local Definitions

¢ Symbolic Name in XML Configuration: checkNoUnusedLocalDefinitions
¢ Dependant Tags in XML Configuration: -

This check makes sure there are no unused local definitions. This covers local constants, timers, variables, ports,
template variables and local template definitions. Currently component definitions, function definitions, altstep

definitions and testcase definitions are analyzed, as well as module control parts.

There Must Be No Uninitialised Local Variables

¢ Symbolic Name in XML Configuration: checkNoUninitialisedVariables
¢ Dependant Tags in XML Configuration: checkNoUninitialisedVariablesExclude

This check makes sure there are no uninitialised local variables. This covers local variables declared within
statement blocks or module control parts. Variables declared within components are not considered as they may or
may not be initialised depending on which other behaviour constructs have been executed. Instead, the data flow
analysis is performed strictly within the scope of the top-level statement block. In the following example, the state
of the various variables declared within a function is described for each statement using comments directly above

the statement.

function f_ConditionalSpec() {
var integer v_sO0;
var integer v_sl;
var integer v_s2 := 1;
var integer v_s3;
var integer v_s4;

var integer v_s5;

//v_s2 1is initialised upon declaration -> no warning
if (v_s2 == 1) {
//v_s3 is not initialised —-> warning
//v_s0 initialised within the conditional after this statement

v_s0 := v_s3 + 1;

//v_sl is not initialised -> warning
//v_s2 1is initialised -> no warning
//v_s3 initialised within the conditional after this statement

v_s3 := v_s2 + 1 + v_sl;

//v_s3 is initialised above —-> no warning
//v_s4 initialised within the conditional after this statement
v_s4 := v_s3 + 1;

} else {

12 01/11/26

//v_s2 is initialised —-> no warning
//v_s4 initialised within the else branch after this statement

v_s4d := v_s2 + 1;

//v_s3 1is only initialised within one of the possible paths -> warning
//v_s4 is initialised within both possible paths (within all branches of the conditior

v_s5 := v_s3 + v_s4;

For variables initialised within branching behaviour, such as if-else if-else constructs, alt statements, and call
statements, the data flow analysis evaluates whether each branch directly initialises the variables with absolute
certainty. If the variable is initialised in only some of the branches, then a warning is raised as it cannot be ensured
that a variable will be initialised before use during execution. This also applies to nested branches. For loops, it
cannot be ensured that a variable will be initialised as a loop can be skipped if the loop condition evaluates to false.
In such case, variables initialised within the loop are considered as such in the subsequent statements within the
loop, however, for statements outside the loop, the variable is still considered to be not initialised (unless there is

explicit initialisation outside the loop).

The checkNoUninitialisedVariablesExclude setting can be used to filter out warnings for variables of certain
types. The meta-types enumerated, union, record of, record, set of, set, can be listed in order to exclude warnings
for all variables of the corresponding meta-type from the output, e.g. exclude all variables of all record types.
Additionally, user defined concrete types can be listed as well, so that only warnings for variables of a specific
type, e.g. a specific record type, are excluded from the output. In the following example configuration, all warnings
for all variables of set and set of types, as well as for all variables of the type MyRecordType are excluded from the

output.

<checkNoUninitialisedVariablesExclude >
<string>set</string>
<string>set of</string>
<string>MyRecordType</string>

</checkNoUninitialisedVariablesExclude >

The meta-types enumerated, union, record of, record, set of, set, are currently set to be excluded by default when a

new configuration profile is generated.
There Must Be No Literals

¢ Symbolic Name in XML Configuration: checkNoLiterals
¢ Dependant Tags in XML Configuration: -

13 01/11/26

This check makes sure there are no literals used, except in module parameters, template definitions, and constant
definitions. Note that while in both module-level constants and local constants literals are permitted, in the case of
templates, only template definitions at the module level can contain literals. Note also that currently matching
symbols, boolean values, verdicts, omit-values, enumerated values, and address-values are not considered literals.
This may be a subject to change.

There Must Be No ValueOf Operations for Values

¢ Symbolic Name in XML Configuration: checkNoValueOfForValues
¢ Dependant Tags in XML Configuration: -

This check makes sure there are no valueof operations on "pure” values. This currently covers references to local

variables, formal parameters, component variables, return types of functions, and defined templates.

function f_Work () {
var float v_ToConvert := 2.0;
var float v_ValueCms;
var template float v_ToConvertTemplate := 2.0;
//Being a value already the call to valueof is redundant —-> warning
v_ValueCms := f_ConvertInchesToCm(valueof (v_ToConvert));
//Should be ok -> no warning
v_ValueCms := f_ConvertInchesToCm(valueof (v_ToConvertTemplate));
}
function f_Work (
float p_ToConvert,
template float p_ToConvertTemplate
) return template float {
var float v_ValueCms;
//Being a value already the call to valueof is redundant —-> warning
v_ValueCms := f_ConvertInchesToCm(valueof (p_ToConvert));
//Should be ok -> no warning

v_ValueCms := f_ConvertInchesToCm(valueof (p_ToConvertTemplate));

There Must Be No AnyValueOrNone in List Values

¢ Symbolic Name in XML Configuration: checkNoAnyValueOrNonelnListValues
¢ Dependant Tags in XML Configuration: -

This check makes sure there are no AnyValueOrNone assignments to "list" values (assignments to values within a

template or value of a record of or set of type). This currently covers references to local variables, formal

parameters, component variables, return types of functions, and defined templates.

14 01/11/26

type record MyListElement_Type {
integer x

/.

type set MySetElement_Type {
integer x

VY

type record of MyListElement_Type MyList_Type;
type set of MySetElement_Type MySet_Type;

type component exampleComponent {
var template (omit) MyListElement_Type cv_MyListElement2 := {};
var template (present) MyList_Type cv_MyList;

function f_FunctionReturningElementl (
// ..

) return template MyListElement_Type {
/] ..

function f_Examples (
template MyListElement_Type p_MyListElement,
template (present) MyListElement_Type prp_MyListElement,
MyListElement_Type pv_MyListElement

) runs on exampleComponent {

var MyListElement_Type v_MyListElementl := {};

var template (omit) MyListElement_Type v_MyListElement2 := {};
var template (omit) MySetElement_Type v_MySetElement2 := {};
var template (value) MyListElement_Type v_MyListElement3 := {};
var template (present) MyListElement_Type v_MyListElement4 := {};
var template MyListElement_Type v_MyListElement5 := {};

var template (present) MyList_Type v_MyList;
var template (value) MyList_Type v_MyListV;
var template (present) MySet_Type v_MySet;

var integer i := 1;

v_MyList[i] := v_MyListElementl; // ok (SingleVarInstance)
v_MyList[i] := v_MyListElement2; // shall cause an error/warning
v_MyList[i] := cv_MyListElement2; // shall cause an error/warning
cv_MyList[i] = cv_MyListElement2; // shall cause an error/warning
cv_MyList[i] := v_MyListElement2; // shall cause an error/warning
v_MySet[i] := v_MySetElement2; // shall cause an error/warning
v_MyList[i] := v_MyListElement3; // ok (restriction=value)
v_MyList[i] := v_MyListElement3.x // ok (restriction=value) + field
v_MyList[i] := v_MyListElement4; // ok (restriction=present)

15 01/11/26

v_MyList[1i

v_MyListElement5;

//

shall cause an error/warning

(1]
v_MyList[i] = cr_MyListElementl; // shall cause an error/warning
v_MyList[i] = cr_MyListElement2; // ok (restriction=value)
v_MyList[i] := cr_MyListElement3 (1) // ok (restriction=value) + paramt
v_MyList[i] = v_MyListV[1] // ok (restriction=value) + field
v_MyList[i] := valueof (cr_MyListElement3 (1)) // ok (valueOf)
v_MyList[i] := f_FunctionReturningElementl () ; // shall cause an error/warning
//extra: parameters
v_MyList[i] = p_MyListElement; // shall cause an error/warning
v_MyList[i] := pv_MyListElement; // ok (FormalValuePar)
v_MyList[i] := prp_MyListElement; // ok (restriction=present)
//extra: direct
v_MyList[i] := omit; // shall cause an error/warning
v_MyList[i] := *; // shall cause an error/warning
}
template (omit) MyListElement_Type cr_MyListElementl := {};
template (value) MyListElement_Type cr_MyListElement2 := {};
template (value) MyListElement_Type cr_MyListElement3 (integer p) := {};
const MyListElement_Type ccr_MyListElement2 := {};
template (present) MyList_Type cr_MyList (
MyListElement_Type p_Paraml, // ok (FormalValuePar)
template (value) MyListElement_Type p_Param2, // ok (restriction=value)
template (omit) MyListElement_Type p_Param3, // shall cause an error/warning
template (present) MyListElement_Type p_Param4, // ok (restriction=present)
template MyListElement_Type p_Paramb // shall cause an error/warning
) =
/]
p_Paraml,
VA
p_Param?2,
/]
p_Param3, // shall cause an error
/]
p_Parami4,
/..
{x:=p_Param2.x}, // ok, not directly assigned to 11
/]
p_Paramb, // shall cause an error
/...
cr_MyListElementl, // shall cause warning
/]
cr_MyListElement2, // ok (restriction=value)
/]
cr_MyListElement3 (1), // ok (restriction=value) + paran

/e

16

01/11/26

ccr_MyListElement2 // ok (constant)
}i

function f_Extras () {

var template MyListElement_Type v_Element := *;

var template MyListElement_Type v_Element_e := {};

var template (present) MyListElement_Type v_Element_p := {};

var template MyList_Type v_Listl := { -, v_Element }; // shall cause an error/
var template MyList_Type v_List2 := { -, —, omit}; // shall cause an error/
var template MyList_Type v_Listl := { -, v_Element_e }; // shall cause an error/
var template MyList_Type v_Listl := { -, v_Element_p }; // shall be fine?

// BUT

var template MyList_Type v_List3 := { cr_MyListElement2, * }; // is allowed i.e. shall
var template MyList_Type v_List3p := { cr_MyListElement3 (1), * }; // is allowed i.e. =
var template MyList_Type v_List4d := { * }; // is allowed too
v_List4[0] := * //shall still cause an error/warning

var template MyListElement_Type v_Element_r := v_Element_e; // should be ignored?
var template MyList_Type v_Listl := { -, v_Element_r }; // shall cause an error/

// this is not checked as it is indirect

var template (present) MyListElement_Type v_Element_rp := v_Element_e;

//should be i

var template MyList_Type v_Listl := { -, v_Element_rp }; // shall cause an error

// —> not possible dire

// -> in case earlier i

//extra

var template (present) MyList_Type v_MyList;

var template (value) MyList_Type v_MyListV;

v_MyList := {}; // ok
{v_MyListV[1]}; // ok

v_MyList

There Must Be No Uninitialized Fields in Templates

¢ Symbolic Name in XML Configuration: checkNoUninitializedFieldsInTemplates
¢ Dependant Tags in XML Configuration: checkNoUninitializedFieldsInTemplatesRecursion

This check makes sure there are no uninitialized fields in templates. This currently covers declared templates (on

the module level only) for structured types declared in TTCN-3 and ASN.1 (see ASN.1 Support for details).

//manually defined types

type record EventDefinitions {
EventIds eventlds,
integer fieldint,
boolean fieldbool,
integer fieldextmandat,

integer fieldextopt optional,

17 01/11/26

boolean fieldextboolopt optional
}
//this is probably a union?
type record EventId {
Al eventAl
}
type record Al {
boolean fieldeventAl
}
type record of EventId EventIds

template (value) EventDefinitions cs_EventDefinitions_eventAl_ Errors (
boolean p_FieldeventAl := true ,
integer p_Fieldint := 0 ,
boolean p_Fieldbool := true , //integer p_Fieldextmandat := 1,
integer p_Fieldextopt := 2
/*,
template (omit) boolean p_Fieldextboolopt := omit
*/
) = A
eventIds := {
eventAl := {
fieldeventAl := p_FieldeventAl
}
by
fieldint := p_Fieldint ,
fieldbool := p_Fieldbool ,
//fielextmandat := p_Fieldextmandat, -> warning for missing field
fieldextopt := p_Fieldextopt
//fieldextboolopt := p_Fieldextboolopt —-> warning for missing field

//correct version: should not raise warinings
template (value) EventDefinitions cs_EventDefinitions_eventAl (
boolean p_FieldeventAl := true ,
integer p_Fieldint := 0 ,
boolean p_Fieldbool := true,
integer p_Fieldextmandat := 1 ,
integer p_Fieldextopt := 2 ,
template (omit) boolean p_Fieldextboolopt := omit

eventIds := {

eventAl := {
fieldeventAl := p_FieldeventAl

by

18 01/11/26

fieldint := p_Fieldint ,

fieldbool := p_Fieldbool ,
fieldextmandat := p_Fieldextmandat ,
fieldextopt := p_Fieldextopt ,
fieldextboolopt := p_Fieldextboolopt

By default only the first level of modified templates is checked in case a template modifies another template or is
assigned to another template, and the field specifications in the base template are considered. With the option
checkNoUnititializedFieldsInTemplatesRecursion multiple levels of modified or assigned templates are
considered.

module checkNoUnititializedFieldsInTemplatesRecursion ({
type record R {
integer f1,
integer £f2,

integer £3

template R A := {fl := 1} //base template, not fully-specified -> warning

template R Bl modifies A := {f2 := 2, £3:= 3} //fully-specified, inherits f1 -> no warninc
template R B2 modifies A := {f2 := 2} //not fully-specified, inherits fl, misses £f3 -> war
template R Cl modifies Bl := {fl := 3} //fully-specified, inherits £f2, £3 -> no warning
template R C2 modifies B2 := {£f3 := 3} //fully-specified, inherits f1 from A, f2 from B2

//=> no warning if checkNoUnititializedFieldsInTemplatesRecursion is true

//-> warning if checkNoUnititializedFieldsInTemplatesRecursion is false (only f2 from B2 c
template tr t_tr_mod_base_full_assigned (charstring p_c) := t_tr_mod_base_full("a", {}) //nc
template tr t_tr_mod_base_full (charstring p_c) modifies t_tr_base_full := {

common := (p_c) //no warning

template tr t_tr_base_full (integer p_ind) := {

common := "yes", //no warning
indication := p_ind,
version := 1

template tr t_tr_ref_ref mod_c(charstring p_c) modifies t_tr_ref_ref := {

common := (p_c) //no warning

19 01/11/26

template tr t_tr_ref mod_c(charstring p_c) modifies t_tr_ref

common := (p_c) //no warning

template tr t_tr_ref ref mod(charstring p_c)

version := (p_c) //warning

template tr t_tr_ref _mod(charstring p_c) modifies t_tr_ref

version := (p_c) //warning
}
template tr t_tr_ref ref (integer p_1i) := t_tr_ref(p_1i)
template tr t_tr_ref(integer p_1i) := t_tr_base(p_1i)

template tr t_tr_ref no_par(integer p_1i) :=

template tr t_tr_base(integer p_ind) := {

// common := "yes", //common not specified
indication := p_ind,
version := 1

type record tr {
charstring common,
integer indication,

integer version

template rx_sub rx_sub_par (template rx_sub p_rx)

template rx_sub t_rx := {
version := 1,
extensions := "x1",

size := 3

type rx rx_sub

type record rx {
integer version,
charstring extensions,

integer size

20

modifies t_tr_ref ref

//warning

//warning

t_tr_base //warning

p_rx //skipped

01/11/26

There Must Be No Zero or Multiple Fields in Union Templates

¢ Symbolic Name in XML Configuration: checkNoZeroOrMultipleFieldsInUnionTemplates
¢ Dependant Tags in XML Configuration: checkNoUninitializedFieldsInTemplatesRecursion

This check makes sure there are no zero or multiple initialized fields in union templates. This currently covers
declared templates (on the module level only) for union types declared in TTCN-3 and in ASN.1 (see ASN.1
Support for details).

module unions {
template tu tu_func_mod modifies tu_func := {
//skipped

template tu tu_func_ref := tu_func()
//skipped
template tu tu_func_ref np := tu_func

template tu tu_func := f_tu()

//no warning (no way to determine) -> skipped
template tu tu_func := tu_base()
template tu tu_base_mod_empty modifies tu_base := {

//no warning

template tu tu_base_mod_c modifies tu_base := {

common := "b" //no warning, same

template tu tu_base_mod modifies tu_base := {

version := 0 //warning more than one / different

template tu tu_base := {

common := "a"

function f_tu() return tu {

return tu_base

type union tu {

charstring common,

21 01/11/26

integer indication,

integer version

By default only the first level of modified templates is checked in case a template modifies another template or is
assigned to another template, and the field specifications in the base template are considered. With the option
checkNoUnititializedFieldsInTemplatesRecursion multiple levels of modified or assigned templates are
considered. While the TTCN-3 semantics state that in the case of modified templates the newly assigned field
replaces the field specified in the base template, the warning from this check can still be beneficial in highlighting

cases where that may be unintentional.

22 01/11/26

	tmp19s3BGtracpdf

