
T3D Documentation

T3D Documentation Outline

Installation / Setup1.
Using T3D2.

Configuration1. 3.
Command-Line Usage1. 4.
Linked Files1. 5.
Output Formats1. 6.
Performance and Memory Usage1. 7.

Main Output8.
Output Paths1. 9.
XML Output1. 10.
HTML1. 11.

Layout1. 1. 12.
CSS and Layout Customization1. 1. 13.
JavaScript1. 1. 14.

Documentation Generation Log
Information1.
Error2.

15.

Warnings
Empty Tags1.
Misplaced Tags2.
Identical Description Tags3.
Too Many Tags4.
Undocumented Parameters5.
Required @desc Tags for Functions6.
Documented But Nonexistent Parameters7.
Cyclic Imports8.

1. 16.

HTML Views
Main View1.
Module Parameter / Testcase View2.
Import View3.
Print View4.

17.

Low-Level Dependencies (migrated from T3Dv1 to T3Qv2)18.
The Documentation Generation Process19.

T3D Documentation 1 05/18/24

T3D is a documentation generation tool for TTCN-3. It utilizes multiple technologies to transform TTCN-3 source
code (with or without tagged paragraph comments) into a set of easily navigable offline HTML webpages. In
addition to the main view which allows navigation through the constructs in the source code, there are two
relational / dependency views that correlate certain particularly important constructs of the TTCN-3 language,
namely the Module Parameer / Testcase View and the Import / Module Dependency View, which correlate
testcases and module parameters, and modules respectively.

Installation / Setup

The following software must be installed on the system prior to the use of T3D

A Java Runtime, at least version 1.7 (?http://java.sun.com, will be installed automatically during T3D
installation if not already present).

•

Additionally, a standards compliant internet browser with activated JavaScript support is required to be able to
optimally use the documentation content generated by the tool.

The T3D command-line tool requires two environment variables to be set no matter what the operating system is.

JAVA_HOME - should point to the Java Runtime•
T3D_HOME - should point to the installation directory of T3D•

The installation tool for Windows should take care of setting these environment variables correctly including the
installation of Java if necessary. For Unix environments, these have to be configured manually (we will refer to
MacOS as Unix environment as well). In order to use T3D properly, we suggest to include T3D_HOME in the path
variable of your Unix system. The Windows Installer automatically takes care of the inclusion in the system path.

Using T3D

T3D is a command line tool which can be called by simply typing "t3d" in Windows or on Unix systems. The
Windows command-line can be accessed by starting the program "cmd". For Unix systems, we only support bash
environments.

Configuration

T3D uses an XML-based configuration format. Starting with version v1.0.0, the location of the configuration file
must be supplied as a command line option during execution (the location was previously based in the default user's
data location - depending on the system, a file t3d.xml was stored in %APPDATA%\T3D (Windows) or in ~/.t3d/
(Unix)). The location of the %APPDATA% directory depended on the username, the Windows version and possibly the

T3D Documentation 2 05/18/24

http://java.sun.com

localization. For example, for a user 'foobar' on a German Windows XP machine, the resulting configuration path
would be C:\Documents and Settings\foobar\Application Data\T3D. In version v1.0.0 and onwards, the
location of the configuration file has to be supplied every time T3D is called. Additionally, starting with version
v1.0.1, if there is no existing configuration file in the selected location, the tool will prompt the user to use the
appropriate option to generate a new configuration with the default settings. Thus, the tool has to be started with the
appropriate parameter to generate a new configuration prior to actual usage. This way, it will be possible to modify
the configuration file to accommodate the particular needs of the user prior to generating any output. By location
here the path, filename, and extension of the configuration file are meant, which implies that any filename and any
extension can be used. It is probably best to retain certain norms in naming the configuration files, at least in
preserving the file extensions (.xml) to avoid confusion. If the fact that a new XML configuration is automatically
generated if existing one is not found is too confusing, there may be a separate option available in the command
line to generate new default configuration files in future releases.

Please note that after an update, during the development stage, the configuration files will often be extended. Thus,
it may be necessary to generate a new configuration file and transfer the custom settings from the old configuration
file. The configuration file has two sections:

A configuration profiles section•
A main section•

The ConfigurationProfiles section contains a list of DocumentationProfile elements. Its elements contain the tags
profilename as well as elements with settings for the documentation generation, such as output path and paths to
files needed for the generation among others. In the default t3d.xml that is created, there is a profile called
defaultProfile that initializes all profile configuration values to the default values. This is also the configuration of
an implicitly given profile called all. The all profile is not part of the XML configuration, but it exists and is known
to the tool.

Since v0.4, configuration profiles also have a version (profileVersion element), that regulates the profile
compatibility. If a profile from an older version is used, T3D will throw and error and recommend profile upgrade
or the selection of another profile. Also, further robustness checks have been introduced to provide hints if the
configuration profile is otherwise incompatible or corrupted. In case of a problem that can be localized, a
corresponding error message is provided suggesting the location of the problem.

Also, there are several generic options, that affect the overall behavior of the T3D tool. The known extensions for
files that are to be processed can be specified by means of a regular expression in the resourceExtensionsRegExp
option. By default, ttcn,ttcn3 and 3mp file extensions are recognized. Since v1.0.1, there is also support for
supplying input by means of what will be referred to as project files. These files specify a list of input files and
directories (including wildcards). The projectExtension option regulates what is to be considered a project file.
Note that this is not a regular expression option, therefore only a single value is currently supported. Since v1.0.3,
the ignoredResourceRegExp option enables the specification of regular expressions for resources within the set of

T3D Documentation 3 05/18/24

input files that will be ignored during the processing steps. Note that all resources in the input set will be parsed and
pre-processed so that definitions within ignored resources will be still be correctly resolved during the
documentation generation phase. The ignored resources will be skipped during the documentation generation steps
(annotated with (Skipped) in the output). Note also that currently this may lead to broken links in the HTML
documentation output. The default setting for ignored resources is .*IGNORED.*, meaning that resources which
contain IGNORED in their full path will be skipped. There is an option to switch recursive processing on and off
(settingRecursiveProcessing). There is an option to switch aborting on (parsing) errors on and off
(settingAbortOnError). Both of these options are turned on by default. Turning them off may result in unreliable
output. Files that contain syntax errors will be documented only up to the point of the first syntax error occurrence.

Then there are the options regulating the documentation generation process and the logging output (further details
are featured below), and the options defining the paths to dynamically linked files necessary for the documentation
generation process (which do not concern the user in the usual usage scenarios). These files are described in more
detail below.

Starting with v1.0.1, it is possible to define custom names for the supported documentation tags in the
commentTagsConfiguration section of the configuration.

Finally, there are options regulating the output. Currently there is only one setting - the output directory
(outputDirectory), where the output files will be placed. Other options regulating the output have been relegated to
the command line interface. Note that this option can also be overridden by a corresponding command line option.

In the main section, there is currently one single configuration element defaultConfigurationProfile. It points to
the implicit all profile by default. The all profile has all settings set to their default values. The
defaultConfigurationProfile is the profile that will be used if no specific profile is provided as command-line
parameter. If the specified defaultDocumentationProfile does not exist in the configuration, T3D will fall back to
the implicit all profile.

Some of the profile options may be moved to the main section in the future, as they are rather generic.

A default newly generated configuration file currently looks like this:

<T3DConfig>

 <ConfigurationProfiles>

 <DocumentationProfile>

 <profileName>defaultProfile</profileName>

 <profileVersion>v1.0.2</profileVersion>

 <resourceExtensionsRegExp>ttcn|ttcn3|3mp</resourceExtensionsRegExp>

 <ignoredResourceRegExp>.*IGNORED.*</ignoredResourceRegExp>

 <projectExtension>t3p</projectExtension>

 <settingRecursiveProcessing>true</settingRecursiveProcessing>

 <settingAbortOnError>true</settingAbortOnError>

T3D Documentation 4 05/18/24

 <loggingConfiguration>

 <showFullPath>false</showFullPath>

 <showFilename>true</showFilename>

 <showMessageClass>true</showMessageClass>

 <showDetails>true</showDetails>

 <logOutputPrefix> </logOutputPrefix>

 </loggingConfiguration>

 <statShowSummary>true</statShowSummary>

 <statShowLOC>true</statShowLOC>

 <commentTagsConfiguration>

 <descTag>desc</descTag>

 <authorTag>author</authorTag>

 <configTag>config</configTag>

 <exceptionTag>exception</exceptionTag>

 <memberTag>member</memberTag>

 <paramTag>param</paramTag>

 <purposeTag>purpose</purposeTag>

 <remarkTag>remark</remarkTag>

 <returnTag>return</returnTag>

 <seeTag>see</seeTag>

 <sinceTag>since</sinceTag>

 <statusTag>status</statusTag>

 <urlTag>url</urlTag>

 <verdictTag>verdict</verdictTag>

 <versionTag>version</versionTag>

 </commentTagsConfiguration>

 <includeConstructBody>true</includeConstructBody>

 <hideConstructBody>false</hideConstructBody>

 <showOriginalT3DocTags>false</showOriginalT3DocTags>

 <checkUndocumentedParameters>true</checkUndocumentedParameters>

 <checkFunctionDescTagsRequired>false</checkFunctionDescTagsRequired>

 <checkConsistentTagUsage>true</checkConsistentTagUsage>

 <checkIdenticalDescriptionTags>true</checkIdenticalDescriptionTags>

 <checkCyclicImports>true</checkCyclicImports>

 <cssFile>$T3D_HOME/css/doc.css</cssFile>

 <jsFile>$T3D_HOME/js/doc.js</jsFile>

 <xsltFileHTML>$T3D_HOME/xslt/html.xsl</xsltFileHTML>

 <xsltFileImport>$T3D_HOME/t3d/xslt/html_import.xsl</xsltFileImport>

 <outputDirectory>DOCUMENTATION</outputDirectory>

 </DocumentationProfile>

 </ConfigurationProfiles>

 <defaultConfigurationProfile>defaultProfile</defaultConfigurationProfile>

</T3DConfig>

where {$T3D_HOME} is substituted by the value of the T3D_HOME environment variable as specified in the setup
when the configuration file is generated. This means that the same profile may not be directly usable on a different
configuration, where the T3D_HOME environment variable has a different value. This will be subject to change in the

T3D Documentation 5 05/18/24

future in that at least substitution with the environment variable is done at runtime in the default configuration.

The options regulating the documentation generation process and logging output have the following effects:

includeConstructBody (by default true) - The documentation will contain the bodies of module
definitions. Leaving out the bodies contributes to a more abstract and concise documentation. However the
details may often be necessary.

•

hideConstructBody (by default true) - The module definition bodies are hidden by default when an
HTML documentation page is loaded. This makes the initial presentation more compact.

•

showOriginalT3DocTags (by default true) - The HTML documentation will use the original T3Doc tags
(e.g. "@author John Doe" instead of "Author(s): John Doe").

•

checkUndocumentedParameters (by default true) - The T3D generation process log output will include
warnings on undocumented formal parameters

•

checkFunctionDescTagsRequired (by default false) - The T3D generation process log output will include
warnings on missing @desc tags for function definitions

•

checkConsistentTagUsage (by default true) - The T3D generation process log output will include
warnings on incorrect tag usage in consistence with the TTCN-3 Documentation Specification Standard
(for example: multiple version or other tags that may only be used once, etc.)

•

checkIdenticalDescriptionTags (by default true) - The T3D generation process log output will include
warnings identical description tags (defined by string equivalence currently, more sophisticated identity
relation may be employed in future releases)

•

checkCyclicImports (by default true) - T3D will check the project for cyclic imports (which may take up
to several minutes on large and complex test suites) and report any occurrences in the documentation
generation log output.

•

Command-Line Usage

T3D is used as follows:

t3d [options] ((--html | --xml-only) | --local-dependencies)+

 (filename | path)+

This seemingly complicated syntax indicates several peculiarities of the command line usage of the tool:

Apart from any required options (see below), there always have to be at very least two other parameters that needs
to be specified. One of these is the input parameter, which can be either a path that contains the TTCN-3 files that
should be analyzed, the name of an individual file, or any combination of these (a mixed list), including wildcards.

If a path provided as input (and recursive processing is enabled in the configuration, which is the default
setting), T3D will recursively parse and analyze all files in this directory that match the provided file

•

T3D Documentation 6 05/18/24

extensions (which are specified in the configuration file) and generate documentation for all of them. For
the current path a simple '.' is sufficient. If no files match these extensions, T3D will output a corresponding
message and quit.
If an individual file is provided as input, then only that file will be processed and documented.•
If the path or filename contains spaces, you need to put the path into quotation marks or use the
auto-completion feature of the environment (provided there is one), which should take care of escaping
spaces or enclosing the complete path in quotation marks.

•

If a list of individual files and/or paths are provided as input, these will be combined and processed
together.

•

If wildcards are used, these will be expanded by the command-line environment into a list and
subsequently analyzed as such.

•

The other mandatory parameter is the output format, which may (currently) be one of three possible options:

--html is probably the most likely option. It will cause the generation of the complete HTML
documentation, including intermediate XML files.

•

--xml-only will result in the generation of the intermediate XML files only, without the HTML files.•
--local-dependencies will result in the generation of an intermediate XML file containing the local
dependencies as described below. The other intermediate XML files and the HTML documentation will not
be generated if only this output option is selected.

•

The local dependencies intermediate XML file may be generated in addition to either the other intermediate XML
files or the complete HTML documentation, including the intermediate XML files by using two output format
parameters together (e.g. --local-dependencies --html, the order is irrelevant; --html supersedes --xml-only,
meaning it makes no sense to use both).

A summary of the available options is provided below:

 --generate-config <FILE NAME> Generate a new default configuration

 file at the specified location

 --config <FILE NAME> Configuration file location

 --profile <PROFILE NAME> Configuration profile

 --html Generate HTML documentation, including

 intermediate XML files

 --xml-only Generate intermediate XML files only

 --local-dependencies Generate local dependencies XML file

 --verbosity <LOG LEVEL> Verbosity level (currently supports ERROR,

 WARNING and INFORMATION values)

 --output-path <PATH> Destination path for the output (if

 applicable, otherwise ignored).

T3D Documentation 7 05/18/24

 Overrides the profile setting.

 --help Show this usage information screen

The options not discussed so far are:

--help will provide brief usage information. T3D will stop and document no files when the help screen is
called.

•

The --generate-config option (new as of v1.0.1) allows the generation of new default configuration files
at the location specified. T3D will then quit.

•

The --config option (new as of v1.0.0) is mandatory and has to be specified every time T3D is run
(except when --help or --generate-config are used). It specifies the location of the configuration file.
Starting with v1.0.1, if no configuration file is found at the specified location, the user will be prompted to
use the appropriate option (--generate-config) to produce a new default configuration. To use the
default location from previous versions one will have to specify it manually, e.g.

t3d --config ~/.t3d/t3d.xml

on a UNIX based system or

t3d --config %APPDATA%\T3D}\t3d.xml

on a Windows based system. The --generate-config and the --config options are mutually exclusive,
with --generate-config having precedence, meaning that if both are specified, T3Q will still only
generate the new default configuration and quit. Please not that if the location of the configuration file
contains spaces, it has to be either enclosed in quotation marks or the auto-completion feature of the
environment has to be used to take care of escaping the spaces.

•

The --profile option overrides the defaultConfigurationProfile in the XML configuration. This means
that you can specify multiple profiles in the XML configuration and run T3D using another existing profile
without the need to change the XML configuration. If the profile specified on the command-line does not
exist, T3D will automatically fall back to the default profile provided in the main section of XML
configuration. In turn, if this default profile does not exist as well, T3D will fall back to the implicit all

profile. If the configuration profile name contains any empty spaces, they need to be escaped or the profile
name needs to be enclosed in quotation marks, depending on the environment.

•

The --verbosity option (newly introduced in v1.0.0) regulates the verbosity level of the output messages
based on their type. The possible values are ERROR, WARNING and INFORMATION (in an ascending
inclusive order, meaning that when INFORMATION is selected, the output will include both ERROR and
WARNING verbosity level messages as well). INFORMATION is the default setting. More information
about the message types is available in the next section.

•

T3D Documentation 8 05/18/24

The --output-path option (newly introduced in v1.0.1) makes it possible to supply the output path at the
command line interface (overriding the profile setting). It is added purely for convenience in case the same
profile has to be used on different projects with different destination paths.

•

The native binary executable for Windows supplied with v1.0.1 is discarded again as of v1.0.2, due to the fact that
it does not grant the desired advantages. Thus, the basic usage is reverted to the batch scripts. Starting with v1.0.2,
the batch scripts include a "hidden" --echo option, which simply outputs the deployment specific call to the Java
virtual machine, without any command line arguments, meaning that it makes no sense to provide any further
command line parameters besides the --echo option. The sole purpose of this option is to output the full command
line necessary for starting the tool, which may be necessary for embedding into third party tools. This is why this
option is considered hidden (it also does not show in the standard help screen). It should not affect the general
usage of the tool. If, for whatever reason, other command line arguments are supplied together with the --echo
option, then the --echo option needs to be the first command line argument.

Linked Files

A summary of all linked files as specified in the configuration file, their default location and their function is
presented below:

cssFile $T3D_HOME/css/doc.css - The CSS file defining the layout in the HTML output•
jsFile $T3D_HOME/css/doc.js - The JavaScript file defining basic functionalities for the navigation and
other interactive parts

•

xsltFileHTML $T3D_HOME/xslt/html.xsl - The HTML transformation file used when generating HTML
output for the main and the module parameters views

•

xsltFileImport $T3D_HOME/xslt/html_import.xsl - The HTML transformation file used when generating
HTML output of the import view

•

These linked files can be used to customize and manipulate the output of the T3D tool as described in more detail
in the subsequent sections. Please note that changing these files requires adequate knowledge of the technologies
involved, the lack of which may cause broken functionalities in the generated content or failure in the generation
process. Upon request, some customizations and adjustments may be provided with subsequent or customized
versions of the tool.

Output Formats

The output of T3D can be split into several categories. There is the main output, which is the product of the
documentation process, and, in the general perception, comes in the form of multiple HTML files and several XML
files, which store extracted data in an intermediate format and serve as a basis for the documentation generation.
Then there is also the output of the documentation generation process itself, which will be referred to as the

T3D Documentation 9 05/18/24

documentation generation log. The details follow below.

Performance and Memory Usage

Large TTCN-3 test suites tend to take quite a while to process (both for parsing and for documentation generation).
Therefore, it is generally a good idea to set larger memory limits (as far as the system allows) in order to improve
processing time and avoid possible memory problems. The default setting is to set the upper memory limit to
512MB, which by today's standards is rather conservative, however, it should be sufficient for smaller to
medium-sized TTCN-3 test suites. The optimal memory limits are not easy to determine, and ways to automatically
calculate and set these depending on the available system resources, the size of the input TTCN-3 test suite, and the
configuration in use are currently being investigated. In the meantime, should processing take too long or memory
errors occur, it is advisable to set a higher upper memory limit, depending on the available system resources. This
can be done by manually editing the parameters in the start scripts (t3d.bat and t3d for Windows and Unix
respectively). These files should be edited very carefully, as mistakes may prevent T3D from starting. Under
Windows, in t3d.bat, set the -Xmx parameter in following line:

set JAVA_CMD=%JAVA% -Xmx512m -Xss128m -cp "%CLASSPATH%" org.etsi.t3d.T3D

to the desired upper limit (e.g. to -Xmx1024m for a 1GB upper memory limit).

Under Unix, the t3d file can be changed in a similar fashion by setting the -Xmx parameter in the

JAVA_CMD="$JAVA -Xmx512m -Xss128m -cp $CLASSPATH org.etsi.t3d.T3D"

line to the desired upper limit.

In general, the optimal setting depends on the size of the TTCN-3 test suite and to a degree on the selected output
format.

As of v1.0.3, a tool to guesstimate the optimal memory settings is included with T3D. This tool is launched prior to
the actual tool execution and attempts to detect the maximum memory settings with which T3D can be started at
that particular moment, aiming to both reduce processing time and avoid potential out of memory errors. It should
be noted that this tool can be considered in beta status, as in some edge cases it may cause T3D to crash or to fail at
start. Such cases should be reported so that the memory detection tool can be further adjusted to avoid such issues
in the future. It is still possible to select preferred memory settings manually by adjusting the start-up scripts as
described above, where the particular line has been changed to:

set JAVA_CMD=%JAVA% -Xmx%HEAP%m -Xss128m -cp "%CLASSPATH%" org.etsi.t3d.T3D

under Windows and to

T3D Documentation 10 05/18/24

JAVA_CMD="$JAVA -Xmx`$MT_CMD`m -Xss128m -cp $CLASSPATH org.etsi.t3d.T3D"

under Unix, and the %HEAP% and `$MT_CMD` parts of the line should be substituted with the desired settings.

Main Output

Before getting into the details of the main output, first the location of the output and its calculation need to be
described.

Output Paths

T3D takes the base output path from the outputDirectory element in the XML configuration. In this directory,
depending on the input a sub-directory will be created for each successful T3D execution. The main output includes
the following entities:

XML files containing the information extracted from the input TTCN-3 file(s)•
An html sub-directory containing the generated HTML, CSS, and JavaScript files•

The real output directory is calculated from the input. If the input is a directory then the name of the last directory
in the input path (the directory that is actually to be documented) is selected as destination the name of the
sub-directory: For example, given input path a/b/c (relative) and base output path c:\Temp\T3D\, the generated
documentation will be placed in c:\Temp\T3D\c\. If the input is a filename, then a sub-directory will be created
with the name of that file in the base output directory: For example, given input filename templates.ttcn, the
output will be generated in c:\Temp\T3D\templates\. Any subdirectories leading to the input filename will be
disregarded, e.g. generated documentation for inputs such as Libraries\templates.ttcn or
c:\TTCN\Libraries\templates.ttcn will still be placed in the c:\Temp\T3D\templates\ destination directory.
Particular cases, such as documenting the current directory, e.g. "." or "./", will result in documentation being
generated in a sub-directory in the base output directory with the name of the current directory, that is calling t3d
--config myConfig.xml --profile myProfile . while in c:\TTCN\Libraries\ will generate the
documentation in c:\Temp\T3D\Libraries\Libraries\ (assuming the same base output path is used as in the
above examples). If multiple inputs are provided (e.g. multiple files, directories, or by means of wildcards), the
name of the first entry in the list is taken for the destination sub-path.

XML Output

The XML output consists of (currently) three XML files storing the relevant data extracted from the TTCN-3
sources in a structured intermediate format. The currently generated XML files are:

T3D Documentation 11 05/18/24

project.xml - This file contains the most comprehensive information and represents an abstracted version
of the source TTCN-3 files, including module structure, the individual elements, their bodies (if configured
so), and T3Doc comments for every module, group, and element of the processed TTCN-3 files. It serves
as a basis for the main and the module parameter / test case views (for details on the separate views, see
Section Views below).

•

imports.xml - This file contains information about the imports and dependency relations of the processed
TTCN-3 modules. It serves as a basis for the import / module dependency view.

•

dependencies.xml - This file can be thought of as a blend between an abstracted version of the main
project.xml file and a low-level version of the imports.xml file, featuring a compact representation of
the low-level dependencies at the module definition (element) level - it contains all the module definitions
and all the known and unknown elements referenced directly within each module definition, where
unknown elements are currently prefixed with unresolvedReference---. There is no separate view
associated to this file, since it is basically a compact representation of the main view and its main intent is
the use with third-party tools to perform custom tasks, such as slicing or markup of definitions related to a
particular module definition (e.g. approved / locked definitions, etc.).

•

These XML files serve as a basis for the HTML generation. They can also be utilized by custom third-party tools to
produce different output depending on the particular needs. More information on this is available in the T3D
technical documentation.

HTML

The main output consists of interlinked HTML files. There are three different views serving different purposes.

There is the Main View, which serves as a browseable representation of the source code, with a separate page for
every every module and every construct. The output currently includes and shows the source code for every module
and construct and all references to known constructs are linked to the corresponding page for these construct.

Then there is the Module Parameter/Testcase? View that shows a summary of the module parameters related to a
particular test case and vice versa. Optionally it can also display the path to each reference, which is useful for
indirect references (i.e. a module parameter is referenced in a function or an altstep called within another function,
which in turn is called within the test case).

Finally, there is the Import View which should serve as an overview of the dependency relations between modules.
This view is currently based on the import statements only and does not take into account whether imported
definitions are actually used in the importing module. Apart from direct dependencies, it also lists distinct indirect
dependencies (i.e. when module1 imports from module2 which in turn imports from module3, when module1 is
selected, module3 will be listed as an indirect dependency, since for consistent use of module1 both module2 and
module3 will be necessary).

T3D Documentation 12 05/18/24

Layout

All three views are embedded into a more or less identical layout. The current default layout consists of several
sections:

A header section, which currently includes a path navigation. The path navigation currently features the
view index and the structural path to the selected construct, including the selected / containing module, any
(nested) groups the construct may be in and the construct itself. All the elements up to the selected
construct are references to the respective entities:

T3D Path Navigation

•

A left hand side navigation bar consisting of a view selector, presentation options, a module index and a
construct index, where:

The view selector allows the user to switch between different views on certain constructs, e.g.
switch between the the main view, the module parameter view, and the import view on the
currently selected module, or between the main view and the module parameter view on the
currently selected test case. If a certain view is not available for a particular construct, then upon
selecting that view, the module index for that view will be displayed.

T3D View Selector

♦

The presentation options control whether for example the bodies of the module definitions are
displayed or not in the main view, or whether the contents of the import statements are displayed or
not in the import view.

T3D Presentation Options

♦

The module index allows the user to display the module documentation in all different views, for
all the documented modules.

♦

•

T3D Documentation 13 05/18/24

T3D Module Index
The construct index lists all the construct categories in the main view, and only test cases, module
parameters, and groups in the module parameter view. The contents in each category depend on the
currently selected module or group. If no module or group is selected (i.e. the module index of a
view is selected), then all the documented constructs in all modules are listed. If a module or a
group is selected, then only the constructs defined within that module or group are listed. To make
the presentation more compact and manageable, the construct index categories are all collapsed. By
clicking on a category, the list of constructs of that category is expanded below the category in a
familiar expand-collapse fashion. In the import view, this area is used to display clarifications on
the color scheme used to mark the module dependencies.
Both the module index and the construct lists under the separate categories, as well as elements in
the other views are sorted alphabetically (currently sorting is broken though).

T3D Construct Index

♦

A content section on the right hand side, which contains the actual content of the selected view on the
selected construct.

•

A generation stamp in the lower-right corner indicating the tool name and version, and the generation date
and time for the documentation page.

T3D Generation Stamp

•

The annotated screenshot below summarizes the complete layout for the main view of an example module.

T3D Documentation 14 05/18/24

T3D Annotated Main View
The main output has been tested so far under:

Windows: Firefox 3.x, Opera 9.51, SeaMonkey 1.1, Safari 3.1.2, Internet Explorer 7•
Linux: Firefox 3.x, Opera 10.00, Konqueror 4.2.2•

CSS and Layout Customization

This default layout can be further customized with the help of a Cascading StyleSheet (?CSS) file. The file is
named doc.css and is placed in a css sub-directory under the html directory where the generated HTML files are
located. The default CSS file is copied from the location specified in the configuration profile, which by default is
$T3D_HOME/css/doc.css. Once changes are made to the CSS file in the output folder, they can be transfered back
to the source CSS file or saved in a separate location and referenced in the documentation profile, so that the
updated CSS file will be used the next time this profile is selected for the documentation of TTCN-3 test suites. Be
aware that if the same output path is specified for the same input, all files will be overwritten, including any
customized CSS files.

The default CSS file shall serve as a reference for customized CSS files. It is still in development and not yet
complete. Comments within the file provide hints about the selectors. Further finer details can be deduced by
examining the generated HTML code.

The CSS customizations are mostly for the presentation of the generated documentation. To influence the actual
generated contents, the Extensible StyleSheet Language Transformations (?XSLT) file can be customized. It also
needs to be customized shall new CSS selectors be introduced. More on XSLT in section The Documentation

Generation Process below

T3D Documentation 15 05/18/24

http://www.w3schools.com/css/
http://www.w3schools.com/xsl/

JavaScript

The HTML output also makes use of a basic JavaScript (?JS) file (by default located in T3D_HOME/js/doc.js and
copied to a js sub-folder in the output directory), which provides some basic functionalities necessary for the
enhanced navigation and toggling of details. Same rules as with the CSS file apply, customizations need to be
moved upstream if they are to be reused in future documentation generations. Also adaptation of the XSLT file may
be necessary if major new JS functionalities are introduced. Additionally, a second JavaScript file called index.js is
generated at runtime and then copied to the same folder as doc.js. This file is used to generate the construct index

navigation in the main and module parameters views of the HTML documentation. Since this file is automatically
generated with each documentation generation, it makes less sense to manipulate it upstream, instead it can be used
for fine-tuning the final output. Due to the use of JavaScript, if support for it is not available or disabled in the
user's browser (due to security or other concerns), the navigation will not work properly.

Documentation Generation Log

This log contains information about the generation process itself and is provided initially in the form of console
messages which indicate the progress of the documentation generation process and show any errors or problems
that are encountered during in the process. This log was also exported as an XML file for convenience and
automated post-processing by third party tools. As of v1.0.0 this is no longer the case. The generation of an XML
log file has been suspended until such functionality is reintegrated into the new common logging interface. The log
file file was called log.xml and was located in the target directory where the other XML files from the main output
are located as well. The particular format of the log messages will be described in more detail in the relevant
sections concerning the causes and contexts of their occurrence. Ultimately, all messages shall have a uniform
format, however currently some of them still have different formats. Further information about the XML file itself
will be available in the T3D technical documentation once it is reintegrated.

There are currently three types of log messages:

Information•
Warning•
Error•

Information

Information messages include general information about the documentation process, its progress, as well as brief
statistics at the end. Some of the messages may change to status-type messages in the future, once such type of log
messages is introduced to T3D. Currently the following types of information are considered information messages:

Status reporting (parsing a file, processing a file)•

T3D Documentation 16 05/18/24

http://www.w3schools.com/js/

Runtimes of the separate phases of T3D•
The number of generated HTML documentation files•
Brief statistics including

A list of all processed files♦
A list of all files processed without errors or warnings♦
A list of all files processed with errors or warnings♦

•

Not all of these messages are explicitly marked as INFORMATION messages as of yet, but this will be a subject to
change in the future, where the log output format will be uniform for all log messages.

Warnings

Warnings are associated with problems that occur during the documentation generation process or violations of
certain norms as specified in the Documentation Specification part of the TTCN-3 standard (ES 201 873-10). These
warnings resemble the warnings in T3C quality checks and due to this fact, these features may be moved to T3C in
the future. It possible to turn each check or group of checks (a large portion of the checks falls under the consistent

tag usage category) on and off as described in the configuration section.

Empty Tags

In case a tagged paragraph is specified, but the tag body is empty, a corresponding warning will be issued with the
location of the occurrence.

Example

/*

 * @remark

*/

will result in:

testFile.ttcn: 17: WARNING: Empty tag found: @remark

Note that the warnings currently refer to the line number of the module definition and not of the documentation tag
itself. This concerns all warning messages.

Misplaced Tags

The use of certain tags in tagged paragraphs is restricted to certain contexts. If a documentation tag is used in
association with a module definition that does not permit the use of such a tag a warning will be issued.

T3D Documentation 17 05/18/24

Example

/*

 * @config text

*/

function f1(){

 ...

}

would produce

testFile.ttcn: 31: WARNING: @config tag found (may not be used here)

Identical Description Tags

If identical description tags (@desc) are used to describe two or more different element definitions within all the
processed modules, a warning will be thrown. The identity checking mechanism so far is rather simple, based on a
direct string comparison. An alternative approach may be implemented in the future, using a different notion of
identity, shall this become necessary.

Example

/*

 * @desc Descrption1

*/

function f1(){

 ...

}

/*

 * @desc Descrption1

*/

function f2(){

 ...

}

results in

testFile.ttcn: 31: WARNING: Identical @desc tag found: "Descrption1" (testFile.ttcn:37)

Too Many Tags

While certain tags may occur multiple times (e.g. @author tags), other can only occur once. If a tag that can occur
only once per definition as specified in the standard, occurs multiple times a warning will be thrown.

T3D Documentation 18 05/18/24

Example

/*

 * @version 0.01

 * @version 0.02

*/

function f1(){

 ...

}

will result in

testFile.ttcn: 31: WARNING: Multiple @version tags found (may only contain one)

Undocumented Parameters

Formal parameters shall be described by means of the corresponding @param tags. If this is not the case and if
checkUndocumentedParameters is enabled in the configuration profile, a warning will be thrown.

Example

/*

 * @param a Description of Parameter a

*/

function f1(integer a, boolean b){

 ...

}

will result in

testFile.ttcn: 31: WARNING: Undocumented parameter found: b

Note: There are more subtle details related to the (proper) documentation of formal parameters. In future
considerations, these subtleties may be implemented more thoroughly.

Required @desc Tags for Functions

If enabled (checkFunctionDescTagsRequired configuration flag, disabled by default), this check will throw
warnings if there are no @desc tags present for a function definition.

Example

/*

T3D Documentation 19 05/18/24

 * @param a Description of Parameter a

*/

function f1(integer a){

 ...

}

will result in

testFile.ttcn: 31: WARNING: Code Documentation: Required @desc tag not missing

Documented But Nonexistent Parameters

If on the other hand a tagged description is present for a formal parameter that is not (or no longer) a part of the
module definition, a warning will be issued with details of the occurrence.

Example

/*

 * @param a Description of a

 * @param b Description of b

*/

function f1(boolean b){

 ...

}

results in

testFile.ttcn: 31: WARNING: Documented parameter not found: a

Cyclic Imports

In addition to the pure documentation-related checks, there is currently also a cyclic imports check, which throws
warnings if cyclic imports occur. This is of particular importance for the import view, since cyclic dependencies
will be impossible to represent with the current presentation format. Cyclic imports shall also be detected by most
compilers since there are a lot more problems associated with them. The warning contains the cyclic import and
there is a separate warning for each module that is part of the cycle.

Example

module mod1{

 import mod2;

}

module mod2{

T3D Documentation 20 05/18/24

 import mod3;

}

module mod3{

 import mod1;

}

produces three warnings

mod1.ttcn: 1: WARNING: Cyclic imports found: mod1 -> mod2 -> mod3 -> mod1

mod2.ttcn: 1: WARNING: Cyclic imports found: mod2 -> mod3 -> mod1 -> mod2

mod3.ttcn: 1: WARNING: Cyclic imports found: mod3 -> mod1 -> mod2 -> mod3

Error

Error messages are produced on unrecoverable errors, such as a parsing error (although there is an option in the
configuration that would allow bypassing parsing errors, but it is disabled by default and it is recommended that it
stays that way for reliable results).

HTML Views

The generated HTML documentation currently includes three views:

Main View•
Module Parameter/Testcase View•
Import View•

In addition, an XML file with an intermediate representation for low-level dependencies is generated, but no
HTML view is available for it due to the fact that it represents more or less an abstracted and summarized version
of the main view for special purposes. Some form of HTML presentation may become available in future releases.
The low-level dependency representation will be discussed briefly in the respective section and in more detail in the
technical documentation.

Main View

The purpose of the main view is to provide a browseable representation of the source code, with a separate page for
every every module and every construct defined within the processed files. Additionally, tagged paragraphs used
for documentation are extracted and presented in a separate field. Whether the bodies of the separate constructs are
included in the documentation and if so whether it is displayed by default is controlled by the configuration options
in the profile. With the help of the presentation options in this view, functionalities to expand and collapse the
bodies of constructs can be enabled and used. The source code presentation is formatted using the default settings

T3D Documentation 21 05/18/24

of the code formatter. The settings may be made available in the configuration profile for better customization in
future releases. For convenience, TTCN-3 keywords are highlighted.

Example:

Source code:

/*

 * @desc this is an example module

 * @version 0.1

*/

module ExampleModule{

 function examplefunction() runs on exampleComponent{p1.send(integer:1);examplefunction2()}

 function examplefunction2() runs on exampleComponent{}

}

HTML:

T3D Documentation 22 05/18/24

Hiding the construct bodies from the presentation options or excluding them during the documentation generation
will result in:

In addition, controls for hiding individual construct bodies can be shown via the presentation options, so that only
particular construct bodies are shown / hidden:

T3D Documentation 23 05/18/24

Module Parameter / Testcase View

The module parameter / testcase view serves a summary of the module parameters related to a particular test case.
This works both ways in that it can serve as a summary of the test cases influenced by a particular module
parameter. At the index level it lists all the test cases and all the module parameters with their respective relations
in a tabular format. Both the list of test cases and the list of module parameters can be shown or hidden using the
toggle controls. Also, by clicking on the respective Testcases or Module Parameters headlines, the user can quickly
jump to the respective section, given that it is present and shown. With the help of the presentation controls, the
paths to the actual reference to the module parameter can be shown or hidden for more compact presentation. The
paths can be useful when indirect references to the module parameters are used (e.g. references within functions or
altsteps referenced in the test case). The construct index in this view shows only the relevant types of constructs -
test cases, module parameters and groups. Upon selecting a module, only the test cases and module parameters
defined within the selected module will be displayed, both in the module parameter view and in the construct index.
Another thing worth mentioning is that upon selecting a test case or a module parameter, the entries in the construct
view are also filtered to include only the constructs defined within the module in which the selected construct is
defined. Upon selecting a group, aditional filtering is applied, limiting the constructs shown in the construct index
to the constructs defined within the selected group.

In the tabular representation, selecting an item in the left column will show the corresponding page for the selected
item in the module parameter / testcase view, whereas selecting an item in the right colum (the path to the
reference) will show its page in the main view.

Example

// ...

modulepar integer par1 := 1;

function function1() runs on sampleComponent1 {

 //...

 p1.send (par1);

 p2.receive (charstring:"a");

 //...

}

testcase testcasef1() runs on sampleComponent1 system sampleComponent3 {

 // ...

 function1();

 // ...

}

// ...

whould be shown as:

T3D Documentation 24 05/18/24

(where the relevant relation from the example above is highlighted in green) and

in the module parameter and test case views respectively (with paths enabled from the presentation controls).

Note that these two parts of the module parameter / testcase view may be separated further conceptually in future
releases.

Import View

The import view presents an overview of the dependency relations between modules. Put simply, a module A is
said to depend on module B if module A imports definitions from module B. That is, to utilize module A, a user
will also need to have module B available. On the other hand, when modifying module B, a test developer will have
to take into account its uses in module A (and eventually other modules as well) in order to avoid breaking the
functionality of module A, by either taking precautions to avoid any (negative) impact on module A, or by adapting
module A accordingly to handle the changes in module B. This is referred to as direct dependency, i.e. module A
directly depends on module B. On the other hand, even though import statements in TTCN-3 are not transitive,
indirect dependencies often have to be taken into account as well, due to the fact that changes in one module may
have far reaching implications due to a chain reaction effect. An indirect dependency is when a module A imports
module B, which in turn imports module C. In this context module A is said to depend indirectly on module C
(since changes in module C breaking the functionality in module B may have an impact on the functionality of
module A).

The import view tries to capture these relations and present them in a usable manner, since relations between a
large number of modules may be particularly difficult to represent visually. The current approach consists of a
tabular presentation format with three columns. The middle column contains a list of all processed modules. Upon
selecting any of the modules in the list, the left column is populated by all the modules that are imported by the
selected module (i.e. the selected module directly depends on them), followed by all the modules that are imported

T3D Documentation 25 05/18/24

by the modules imported by the currently selected module (i.e. the currently selected module indirectly depends on
them). Note that the list of indirect dependencies contains only such indirect dependencies which are not already
listed as direct dependencies. Additionally, in the middle column, all the modules listed as direct and indirect
dependencies are also colored accordingly, based on the color scheme as shown in the legend (where otherwise the
construct index is located in the other views). The color scheme can be configured to the particular preferences of
the user via the CSS file. The right column on the other hand illustrates the opposite relations - it lists all the
modules that import the currently selected module, followed by all the modules that import the modules that import
the currently selected module. The latter then filtered in a similar fashion to show modules only once. The modules
depending on the currently selected module (directly and indirectly) are also colored accordingly in the middle
column in a similar fashion to the modules on which the currently selected module depends.

To summarize, this layout can be perceived as a flow of imported definitions from left to right (definitions from
modules in the left column are imported in modules in the middle column, whose definitions are in turn imported
into modules in the right column), or as a flow dependencies from right to left, where modules in the right column
depend on modules in the middle column, which in turn depend on modules in the left column. The import details
(the bodies of the import statements) can be shown or hidden with the help of the presentation controls.

Examples

T3D Documentation 26 05/18/24

T3D Import View Content Section

T3D Import View Legend

T3D Documentation 27 05/18/24

T3D Import Full Picture

In addition, worth noting is that import statement bodies are grouped by modules. For example, the following
TTCN-3 code:

import from module1 {group functions};

import from module2 all;

import from module1 {testcase tc_1, tc_2};

would be shown as

module1

 group functions;

 testcase tc_1, tc_2;

module2

 all;

to avoid redundant entries and keep the presentation compact.

The information about the dependency relations is stored in an intermediate XML representation, which can also be
utilized by third party tools to create different visualizations of the relations or for other purposes. Also the XSLT
file defining the transformations into HTML can be customized as well to accommodate particular needs. More
information on this can be found in the T3D technical documentation.

Note also that this view is currently based on the import statements only and does not take into account whether
imported definitions are actually used in the importing module.

Print View

The print view is available on all pages as a simplified printer-friendly version of their content. It discards all
unnecessary elements, such as navigation entities within the page, which are of no use on printable media. This is
achieved through a section in the CSS file and can thus be further customized to accommodate the user's needs.

The print view is not an "official" view (yet), in that it cannot be directly selected from within the layout. However,
most modern internet browsers do support print preview functionalities that allow the user to see whether the web
page can be printed properly. With or without print preview, browsers will automatically select the printable
presentation format when printing a page so that the output will always be the simplified printer-friendly version of
the contents (unless configured otherwise in the browser's configuration).

Below are a few screen shots illustrating the print views in the main, module parameters/testcase, and import views.

T3D Documentation 28 05/18/24

Examples

T3D Documentation 29 05/18/24

T3D Print View - Main View

T3D Print View - Module Parameters / Testcase View

T3D Documentation 30 05/18/24

T3D Print View - Import View

Low-Level Dependencies (migrated from T3Dv1 to T3Qv2)

The generated low-level dependencies serve (currently) exclusively for custom processing by third party tools for
purposes such as slicing or markup of definitions related to a particular module definition (e.g. approved / locked
definitions, etc.). That is the generated content for the low-level dependencies is only in an intermediate XML
format and there is no HTML view for it (since it is roughly an abstracted version of the main view). Some form of
HTML presentation may become available in future releases.

The low-level dependencies can be thought of as a blend between an abstracted version of the main view and a
low-level version of the import view, featuring a compact representation of the low-level dependencies at the
module definition (element) level - it contains all the module definitions and all the known elements referenced
directly within each module definition.

The structure of the low-level dependencies intermediate representation features a list of all elements, where for
each element the following pieces of information are available:

A unique ID of the element so that it can be uniquely referenced•
The name of the element as per its identifier•
The top-level type of the element (e.g. type, function, altstep, etc.)•
Its definition start location (the line where the definition of the element starts)•
The name of the containing module where the element is defined•
The name of the file containing the module where the element is defined•
A list of the element IDs for all the elements referenced within the current element•

Upon recursive resolution a dependency graph can be created for a set of related elements.

More details about the technical side of the low-level dependencies can be found in the technical documentation.

The Documentation Generation Process

For the benefit of the users, the basic steps needed to produce documentation out of TTCN-3 source files will be
briefly described to provide some insight into the documentation generation process.

The documentation generation process involves several steps. These can be summarized as follows:

T3D Documentation 31 05/18/24

Process the input TTCN-3 files and gather the necessary information, which results in1.
Generate and validate XML files containing all the extracted information, which is the basis for2.
Transform the generated XML files into the desired output format(s)3.

In more detail, step 1. includes parsing and analysis of the input TTCN-3 files. A user has little influence on this
stage. The information collected during the analysis stage of step 1. is then in step 2. exported as XML files in the
output path (by default named project.xml, import.xml, and dependencies.xml). The XML files are validated
using ?XML Schema Documents (XSD) (stored by default under $T3D_HOME/xsd/). Finally, in step 3. the
generated XML files are transformed with the help of the XSLT files into the target documents.

Step 3 is of most interest to the user, since it allows flexible and customizable transformation in just about any
format. Currently only HTML format is available, but PDF- and TeX output, for example, are possible as well.

In the HTML generation process, the above mentioned CSS and JS files are involved, as well as the XSLT files for
HTML transformations (by default located in {$T3D_HOME}/xslt/html.xsl and
{$T3D_HOME}/xslt/html_import.xsl. The XSLT files for HTML transformations include all the necessary
transformation steps to produce the desired HTML output. It may of course be further customized to accommodate
user / project specific needs. The default XSLT files serve generally as a reference. Note that modification of these
files requires a certain level of knowledge of the underlying technologies and improper modifications may result in
documentation generation failures, therefore one should proceed with caution. For further information about
technical details related to the customization of XSLT files, please refer to the technical documentation.

T3D Documentation 32 05/18/24

http://www.w3schools.com/Schema/default.asp

	tmpw0Pm_6tracpdf

