HTML Views

The generated HTML documentation currently includes three views:

e Main View
® Module Parameter/Testcase View

¢ Import View

In addition, an XML file with an intermediate representation for low-level dependencies is generated, but no
HTML view is available for it due to the fact that it represents more or less an abstracted and summarized version
of the main view for special purposes. Some form of HTML presentation may become available in future releases.
The low-level dependency representation will be discussed briefly in the respective section and in more detail in the

technical documentation.
Main View

The purpose of the main view is to provide a browseable representation of the source code, with a separate page for
every every module and every construct defined within the processed files. Additionally, tagged paragraphs used
for documentation are extracted and presented in a separate field. Whether the bodies of the separate constructs are
included in the documentation and if so whether it is displayed by default is controlled by the configuration options
in the profile. With the help of the presentation options in this view, functionalities to expand and collapse the
bodies of constructs can be enabled and used. The source code presentation is formatted using the default settings
of the code formatter. The settings may be made available in the configuration profile for better customization in

future releases. For convenience, TTCN-3 keywords are highlighted.
Example:

Source code:

/*
* @desc this is an example module
* @version 0.1
*/
module ExampleModule {
function examplefunction () runs on exampleComponent {pl.send(integer:1);examplefunctior

function examplefunction2 () runs on exampleComponent({}

HTML:

1 01/12/26

Description:
this iz an example module

Version:
01

module ExampleModule {
function examplefunction ()
runs on exampleComponent {
pl.send (integer:1);
examplefunction2 ()
}
function examplefunctionz ()
runs on exampleComponent {

¥

Hiding the construct bodies from the presentation options or excluding them during the documentation generation

will result in:

module ExampleModule {
function examplefunction ()
runs on exampleComponent
function examplefunction2 ()
runs on exampleComponent

In addition, controls for hiding individual construct bodies can be shown via the presentation options, so that only

particular construct bodies are shown / hidden:

2 01/12/26

module functions itoggle){
import from types all:
import from modulepars all:
import from configuration all:

group micFunctionsitoggle) {
function f1 ()
runs on sampleComponentl iteggleld
pl.send (integer:1);
p2.receive (charstring:"a" J:
}
function 2 (
integer parl,
charstring parz
)

runs on sampleComponentl (toggle

group pitcFunctionsitoggle)

1
Module Parameter / Testcase View

The module parameter / testcase view serves a summary of the module parameters related to a particular test case.
This works both ways in that it can serve as a summary of the test cases influenced by a particular module
parameter. At the index level it lists all the test cases and all the module parameters with their respective relations
in a tabular format. Both the list of test cases and the list of module parameters can be shown or hidden using the
toggle controls. Also, by clicking on the respective Testcases or Module Parameters headlines, the user can quickly
jump to the respective section, given that it is present and shown. With the help of the presentation controls, the
paths to the actual reference to the module parameter can be shown or hidden for more compact presentation. The
paths can be useful when indirect references to the module parameters are used (e.g. references within functions or
altsteps referenced in the test case). The construct index in this view shows only the relevant types of constructs -
test cases, module parameters and groups. Upon selecting a module, only the test cases and module parameters
defined within the selected module will be displayed, both in the module parameter view and in the construct index.
Another thing worth mentioning is that upon selecting a test case or a module parameter, the entries in the construct
view are also filtered to include only the constructs defined within the module in which the selected construct is
defined. Upon selecting a group, aditional filtering is applied, limiting the constructs shown in the construct index

to the constructs defined within the selected group.

In the tabular representation, selecting an item in the left column will show the corresponding page for the selected
item in the module parameter / testcase view, whereas selecting an item in the right colum (the path to the

reference) will show its page in the main view.

Example

//

3 01/12/26

modulepar integer parl := 1;

function functionl () runs on sampleComponentl {
/.
pl.send (parl);
p2.receive (charstring:"a");
/.
}
testcase testcasefl() runs on sampleComponentl system sampleComponent3 {
//
functionl () ;
//

}
//

whould be shown as:

ndex { module_with_moduleParameters / parl - Module Parameter/Tesicase View

parl

| Testcase | Path
|testcasel [>> parl

testcasel 2 |[>>parl

|testcaseAll >> parl

estcasefl: == functionl == parl

[tesicaseloopI_I[[>>funclionI >> parl

|IESICEEE|OO|31_2 |>> testcaseloopl 1 == functionl == parl
|testcaseloopl_3|[>> testcaseloopl_2 >> testcaseloopl_1 >=> functionl >> parl

testcasetcfl |[>> testcasefl >> functionl >> parl

(where the relevant relation from the example above is highlighted in green) and
in the module parameter and test case views respectively (with paths enabled from the presentation controls).

Note that these two parts of the module parameter / testcase view may be separated further conceptually in future

releases.

Import View

The import view presents an overview of the dependency relations between modules. Put simply, a module A is
said to depend on module B if module A imports definitions from module B. That is, to utilize module A, a user

will also need to have module B available. On the other hand, when modifying module B, a test developer will have

4 01/12/26

to take into account its uses in module A (and eventually other modules as well) in order to avoid breaking the
functionality of module A, by either taking precautions to avoid any (negative) impact on module A, or by adapting
module A accordingly to handle the changes in module B. This is referred to as direct dependency, i.e. module A
directly depends on module B. On the other hand, even though import statements in TTCN-3 are not transitive,
indirect dependencies often have to be taken into account as well, due to the fact that changes in one module may
have far reaching implications due to a chain reaction effect. An indirect dependency is when a module A imports
module B, which in turn imports module C. In this context module A is said to depend indirectly on module C
(since changes in module C breaking the functionality in module B may have an impact on the functionality of
module A).

The import view tries to capture these relations and present them in a usable manner, since relations between a
large number of modules may be particularly difficult to represent visually. The current approach consists of a
tabular presentation format with three columns. The middle column contains a list of all processed modules. Upon
selecting any of the modules in the list, the left column is populated by all the modules that are imported by the
selected module (i.e. the selected module directly depends on them), followed by all the modules that are imported
by the modules imported by the currently selected module (i.e. the currently selected module indirectly depends on
them). Note that the list of indirect dependencies contains only such indirect dependencies which are not already
listed as direct dependencies. Additionally, in the middle column, all the modules listed as direct and indirect
dependencies are also colored accordingly, based on the color scheme as shown in the legend (where otherwise the
construct index is located in the other views). The color scheme can be configured to the particular preferences of
the user via the CSS file. The right column on the other hand illustrates the opposite relations - it lists all the
modules that import the currently selected module, followed by all the modules that import the modules that import
the currently selected module. The latter then filtered in a similar fashion to show modules only once. The modules
depending on the currently selected module (directly and indirectly) are also colored accordingly in the middle

column in a similar fashion to the modules on which the currently selected module depends.

To summarize, this layout can be perceived as a flow of imported definitions from left to right (definitions from
modules in the left column are imported in modules in the middle column, whose definitions are in turn imported
into modules in the right column), or as a flow dependencies from right to left, where modules in the right column
depend on modules in the middle column, which in turn depend on modules in the left column. The import details

(the bodies of the import statements) can be shown or hidden with the help of the presentation controls.

Examples

5 01/12/26

T3D Import View Content Section

Legend:
Selected module imports this module

Selected module indirectly depends on this
module

Selected module is imported by this module

This module indirectly depends on the selected
module

Selected module

T3D Import View Legend

6 01/12/26

Main View
Module Parameter/Tesicase View
Import View

toggle import details

Module Index
Examplemodule
comment_Test
functionalityTest
groupTest
module_with_moduleParameters.
undocumentedParameters

I undocumentedParameters - Import View

imports
module_with_moduleParameters
recursive all;

Indirect dependencies:

Modules

module_with_moduleParameters
comment_Test
undocumentedParameters
groupTest

functionalityTest

Examplemodule

Examplemodule
all;

imported by

Legend:

Selected module imports this module

Ccle

S i module ind
module

pends on this

Selected module is imported by this module

This module indirectly depends on the selected
module

Selected module

01/12/26

T3D Import Full Picture

In addition, worth noting is that import statement bodies are grouped by modules. For example, the following
TTCN-3 code:

import from modulel {group functions};
import from module2 all;

import from modulel {testcase tc_1, tc_2};

would be shown as

modulel
group functions;
testcase tc_1, tc_2;
module2
all;

to avoid redundant entries and keep the presentation compact.

The information about the dependency relations is stored in an intermediate XML representation, which can also be
utilized by third party tools to create different visualizations of the relations or for other purposes. Also the XSLT
file defining the transformations into HTML can be customized as well to accommodate particular needs. More

information on this can be found in the T3D technical documentation.

Note also that this view is currently based on the import statements only and does not take into account whether

imported definitions are actually used in the importing module.

Print View

The print view is available on all pages as a simplified printer-friendly version of their content. It discards all
unnecessary elements, such as navigation entities within the page, which are of no use on printable media. This is

achieved through a section in the CSS file and can thus be further customized to accommodate the user's needs.

The print view is not an "official" view (yet), in that it cannot be directly selected from within the layout. However,
most modern internet browsers do support print preview functionalities that allow the user to see whether the web
page can be printed properly. With or without print preview, browsers will automatically select the printable
presentation format when printing a page so that the output will always be the simplified printer-friendly version of

the contents (unless configured otherwise in the browser's configuration).

Below are a few screen shots illustrating the print views in the main, module parameters/testcase, and import views.

8 01/12/26

Examples

Index / Examplemodule

Description:
This is an example of a module in ttcn-3

Author(s):
John Doe

T3D v0.4.1h
Generated 2009-11-29 - 19:15:26

muchle ‘Examplemodule {

const integer conl :=1, con2 ;= 2;

import from groupTest recursive all:

import from functionalityTest {
group types

b

import from undocumentedParameters all:

group ExampleGroup {
testcase ExampleTestcase ()
runs on Ecamplecomponent

}

b
function ExampleFunction {
in charstring parl,
out charstring parz
)
retum boolean {

01/12/26

T3D Print View - Main View

Index / module_with_moduleParameters / parl - Module Parameter/Testcase View

Testcase Path
testcasel == parl
testcasel 2 == parl
testcaseAll => parl
testcasefl == functionl == parl

testcaseloopl 1

== functionl == parl

testcaseloopl 2

=» testeaseloopl 1 => functionl =» parl

testcaseloopl 3

== testcaseloopl 2 == testcaseloopl 1 == functionl >= parl

testcasetcfl

== testcasefl == functionl == parl

T3D Print View - Module Parameters / Testcase View

Index / Examplemodule - Import View

T3D v0.4.1b
Generated 2009-11-29 - 19: 1526

T3D v0.4.1b
Generated 2008-11-29 - 19:15.27

imports Modules imported by
functionality Test functionality Test
group types Examplemodule group ExampleGroup
gmupTe;t comment Test function ExampleFunmmn.
recursive all - ExampleFunction; const con2

undocumentedParameters
all

Indirect dependencies:
maodule_with_moduleParameters

functionalityTest

groupTest

undocumentedParam eters

const conl
caonst conl, conZ; function all
recursive all

Indirect dependencies:
groupTest

10

01/12/26

T3D Print View - Import View

Caption

11 01/12/26

	tmpefoQ0otracpdf

