Documentation Generation Log

This log contains information about the generation process itself and is provided initially in the form of console
messages which indicate the progress of the documentation generation process and show any errors or problems
that are encountered during in the process. This log was also exported as an XML file for convenience and
automated post-processing by third party tools. As of v1.0.0 this is no longer the case. The generation of an XML
log file has been suspended until such functionality is reintegrated into the new common logging interface. The log
file file was called 10g.xm1 and was located in the target directory where the other XML files from the main output
are located as well. The particular format of the log messages will be described in more detail in the relevant
sections concerning the causes and contexts of their occurrence. Ultimately, all messages shall have a uniform
format, however currently some of them still have different formats. Further information about the XML file itself

will be available in the T3D technical documentation once it is reintegrated.
There are currently three types of log messages:

e Information
® Warning

e Error
Information

Information messages include general information about the documentation process, its progress, as well as brief
statistics at the end. Some of the messages may change to status-type messages in the future, once such type of log

messages is introduced to T3D. Currently the following types of information are considered information messages:

e Status reporting (parsing a file, processing a file)
¢ Runtimes of the separate phases of T3D
® The number of generated HTML documentation files
® Brief statistics including
¢ A list of all processed files
¢ A list of all files processed without errors or warnings

¢ A list of all files processed with errors or warnings

Not all of these messages are explicitly marked as INFORMATION messages as of yet, but this will be a subject to

change in the future, where the log output format will be uniform for all log messages.

1 01/11/26



Warnings

Warnings are associated with problems that occur during the documentation generation process or violations of
certain norms as specified in the Documentation Specification part of the TTCN-3 standard (ES 201 873-10). These
warnings resemble the warnings in T3C quality checks and due to this fact, these features may be moved to T3C in
the future. It possible to turn each check or group of checks (a large portion of the checks falls under the consistent

tag usage category) on and off as described in the configuration section.
Empty Tags

In case a tagged paragraph is specified, but the tag body is empty, a corresponding warning will be issued with the

location of the occurrence.
Example
/ *
* @Qremark
*/
will result in:

testFile.ttcn: 17: WARNING: Empty tag found: @remark

Note that the warnings currently refer to the line number of the module definition and not of the documentation tag

itself. This concerns all warning messages.
Misplaced Tags

The use of certain tags in tagged paragraphs is restricted to certain contexts. If a documentation tag is used in

association with a module definition that does not permit the use of such a tag a warning will be issued.

Example
/ *
* @config text

*/
function f1 () {

would produce

2 01/11/26



testFile.ttcn: 31: WARNING: @config tag found (may not be used here)

Identical Description Tags

If identical description tags (@desc) are used to describe two or more different element definitions within all the
processed modules, a warning will be thrown. The identity checking mechanism so far is rather simple, based on a
direct string comparison. An alternative approach may be implemented in the future, using a different notion of

identity, shall this become necessary.

Example

/*

* @desc Descrptionl
*/

function f£1 () {

}
/*
* @desc Descrptionl
*/
function f£2 () {

results in
testFile.ttcn: 31: WARNING: Identical @desc tag found: "Descrptionl" (testFile.ttcn:37)
Too Many Tags

While certain tags may occur multiple times (e.g. @author tags), other can only occur once. If a tag that can occur

only once per definition as specified in the standard, occurs multiple times a warning will be thrown.

Example

/*
* @version 0.01
* @version 0.02

*/

function f£1 () {

3 01/11/26



will result in
testFile.ttcn: 31: WARNING: Multiple @version tags found (may only contain one)
Undocumented Parameters

Formal parameters shall be described by means of the corresponding @param tags. If this is not the case and if

checkUndocumentedParameters is enabled in the configuration profile, a warning will be thrown.

Example
/ *
* @param a Description of Parameter a

*/

function fl (integer a, boolean Db) {

will result in
testFile.ttcn: 31: WARNING: Undocumented parameter found: b

Note: There are more subtle details related to the (proper) documentation of formal parameters. In future

considerations, these subtleties may be implemented more thoroughly.

Required @desc Tags for Functions

If enabled (checkFunctionDescTagsRequired configuration flag, disabled by default), this check will throw

warnings if there are no @desc tags present for a function definition.

Example

/*
* @param a Description of Parameter a
*/

function f1l (integer a) {

will result in

testFile.ttcn: 31: WARNING: Code Documentation: Required @desc tag not missing

4 01/11/26



Documented But Nonexistent Parameters

If on the other hand a tagged description is present for a formal parameter that is not (or no longer) a part of the
module definition, a warning will be issued with details of the occurrence.

Example

/*
* @param a Description of a
* @param b Description of b
*/
function f1l (boolean b) {

results in

testFile.ttcn: 31: WARNING: Documented parameter not found: a

Cyclic Imports

In addition to the pure documentation-related checks, there is currently also a cyclic imports check, which throws
warnings if cyclic imports occur. This is of particular importance for the import view, since cyclic dependencies
will be impossible to represent with the current presentation format. Cyclic imports shall also be detected by most
compilers since there are a lot more problems associated with them. The warning contains the cyclic import and
there is a separate warning for each module that is part of the cycle.

Example

module modl {
import mod2;

}

module mod?2 {
import mod3;

}

module mod3{

import modl;

produces three warnings

modl.ttcn: 1: WARNING: Cyclic imports found: modl -> mod2 -> mod3 -> modl
mod2.ttcn: 1: WARNING: Cyclic imports found: mod2 -> mod3 -> modl -> mod?2

5 01/11/26



mod3.ttcn: 1: WARNING: Cyclic imports found: mod3 —-> modl —-> mod2 —-> mod3

Error

Error messages are produced on unrecoverable errors, such as a parsing error (although there is an option in the

configuration that would allow bypassing parsing errors, but it is disabled by default and it is recommended that it

stays that way for reliable results).

6 01/11/26



	tmpNRzZSctracpdf

