
1

TTCN-3 SIP/SDP Codec – Design document

1 Introduction

The purpose of this document is to present and describe the different
problems, solutions and design choices encountered while developing SIP/SDP codec
within STF370.

The purpose of this document is to present and describe issues and design
choices made while developing a TTCN-3 SIP/SDP codec in the context of the
development of an IMS interoperability test system within STF370 .
For further information the reader is referred to [IMS arch] for an overall view of the
IMS interoperability test architecture which has served as the main source for design
requirements.

This document has been written with the assumption that the reader is well
versed in C++ and TTCN-3 [core] programming. Also good knowledge of the
operation of TCI [TCI] standard is assumed.

2 Design Objective

The main purpose of the TTCN-3 SIP/SDP codec is to implement codec entity [core,
TCI], e.g., in a TTCN-3 IMS interoperability test system described in [IMS arch], i.e.,
transferring SIP and SDP messages from their abstract syntax into transfer syntax and
vice versa. Since the codec essentially only depends on TTCN-3 SIP and SDP types it
is reusable in any test system that uses these types, i.e., the TTCN-3 LibSip library.

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

 DNS Domain Name System (protocol)

IP Internet Protocol
 IMS IP Multimedia Subsystem
 ISDN Integrated Service Digital Network
 ISUP ISDN User Part

OS Operating System
RFC (IETF) Request For Comments
SDP Session Description Protocol
SIP Session Initiation Protocol
TCI TTCN-3 Control Interface
TTCN-3 Testing and Test Control Notation 3

 TE TTCN-3 Executable (as defined in [TRI] and [TCI]

2

4 Design Requirements

4.1 RFCs to be covered

The codec should be able to encode and decode all SIP messages supported by

the TTCN-3 SIP library type structure. Thus it should cover the message formats
described in the following RFCs:

 RFC 3261 SIP: Session Initiation Protocol

 RFC 3262 Reliability of Provisional Responses in the Session Initiation
Protocol (SIP)

 RFC 3265 Session Initiation Protocol (SIP)-Specific Event Notification

 RFC 3313 Private Session Initiation Protocol (SIP) Extensions for Media
Authorization

 RFC 3323 A Privacy Mechanism for the Session Initiation Protocol (SIP)

 RFC 3325 Private Extensions to the Session Initiation Protocol (SIP) for
Asserted Identity within Trusted Networks

 RFC 3326 The Reason Header Field for the Session Initiation Protocol (SIP)

 RFC 3327 Session Initiation Protocol (SIP) Extension Header Field for
Registering Non-Adjacent Contacts

 RFC 3329 Security Mechanism Agreement for the Session Initiation
Protocol (SIP)

 RFC 3455 Private Header (P-Header) Extensions to the Session Initiation
Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP)

 RFC 3515 The Session Initiation Protocol (SIP) Refer Method

 RFC 3608 Session Initiation Protocol (SIP) Extension Header Field for
Service Route Discovery During Registration

 RFC 3841 Caller Preferences for the Session Initiation Protocol (SIP)

 RFC 3891 The Session Initiation Protocol (SIP) "Replaces" Header

 RFC 3892 The Session Initiation Protocol (SIP) Referred-By Mechanism

 RFC 4028 Session Timers in the Session Initiation Protocol (SIP)

 RFC 4244 An Extension to the Session Initiation Protocol (SIP) for Request
History Information

3

 RFC 5009 Private Header (P-Header) Extension to the Session Initiation
Protocol (SIP) for Authorization of Early Media

Some SIP message constructs reuse some headers defined in the HTTP
protocol. Thus the following RFCs should be partially supported:

 RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1

 RFC 2617 HTTP Authentication: Basic and Digest Access Authentication

5 Further design considerations

The following design considerations have been captured based on an analysis
of the various protocols that need to be supported by the codec and the type
definitions provided by TTCN-3 libraries.

5.1 General

The codec should be extensible at low cost. SIP is still evolving and new
headers and messages may be added to the protocol. Therefore it is essential to be
able to add new types in the codec without having to fully redesign it.

The codec should be as generic as possible and the chosen solution should not
be operating system or hardware specific. Ideally, the codec would be useable on both
Windows and UNIX-like operating systems.

In order to ease test system debugging and logs analysis, the codec should
provide a mean to display raw messages, i.e. protocol messages exactly as they are
received. This goal will be achieved by using the “payload” field in message
templates.

Concerning the different kinds of SIP payloads that will be handled by the
codec, it is important to note that the only supported payload will be SDP. All other
payload types (among them, XML) will be processed as character strings.

UTF-8 is the standard encoding type for SIP messages. However, SIP test

suite has been developed using charstring instead of universal charstring. The
codec should somehow deal with this issue. One possible solution would be to replace
unicode characters by displayable characters and raise a warning.

5.2 Encoder

The TTCN-3 types in the SIP library provide an abstract representation of the

SIP messages. Only the semantic information is represented, and all syntactic
elements which do not carry any useful information are not represented. Among them:

4

 linear whitespace and newlines between the header fields

 delimiters , e.g. : ; , ? & = @ a as well as " for quoted string.

It is the responsibility of the encoder to add these structural characters when
necessary, in order to build valid SIP messages. On the contrary, these elements will
have to be removed by the decoder before assigning TTCN-3 values.

5.3 Decoder

Extra white space is semantically meaningless and can appear in many places

inside a SIP message. The codec will have to be able to deal correctly with these
white spaces and ignore them when necessary.

Additionally, SIP specification allows some header fields to appear multiple

times, but with different encoding, i.e., one header field per header, all header fields in
same header, or any variation of the prior. The codec will have to carefully process
these headers and regroup them in a single TTCN-3 list value when decoding SIP
messages, as the TTCN-3 typing is designed to handle multiple header fields in a list
of header field values. The sequence in which these header fields appear must
absolutely be preserved as it has a semantic importance.

SIP specification also gives the opportunity to use short names for some

header identifiers. The codec will have to deal with these synonyms, which is not
really complex but needs to be taken into account especially when dealing with the
previous point.

Current TTCN-3 type system makes use of “record of” and “set of” structure.

Unfortunately there are two ways of representing an empty optional “set of” or
“record of”: either the “record of” is omitted or it is present but contains zero
elements. These two possibilities for representing the same data can have a real
impact on matching process and therefore requires a design decision in decoding.

The decoder shall support the test case writer and ensure or fill in correct

values for the SIP Content-Length header.

Last but not least, it is necessary to find a way to handle an unsuccessful

decoding of messages. The codec should produce a short report for each failed
attempt showing the raw message as well as a short description of the error and its
location in the message.

6 Software Architecture

5

6.1 Rejected solutions

6.1.1 External SIP application

One possible solution could be to use an external SIP application to decode

and encode SIP messages. For this approach it is necessary to develop a
non-standardized interface with this application. In addition, it would make the codec
and thus the complete test environment dependent on that external application. This
situation is not desired especially when considering the questions of maintenance and
extensibility. In addition, the codec would here be vulnerable to possible errors
present in the external application, which would completely reduce the confidence
one can have towards this test suite.
 Another issue raised by this solution is the difficulty to debug the
encoding/decoding of the messages. The codec provided by the existing
implementations of the protocol (server, client, …) are designed to accept the message
or drop it if it is not conformant, but they are not generally designed to help in
debugging the messages received by another implementation (like giving a detailed
account of the location of the error and its description).

6.1.2 Wireshark

A second alternative would be to use a network protocol analyzer such as

Wireshark and use its dissector library to decode SIP messages. This approach brings
sensibly the same problems as the previous one:

 Possible bugs in external tool
 Extensibility and maintenance dependent on external application

In addition, wireshark can only decode the messages. An encoder has to be
implemented separately which could be considered to render the overall solution more
complex to maintain.

6.1.3 Yacc parser

Another approach would be to use a parser generator such as Yacc. A parser

typically receives a sequence of tokens from a lexer and tries to derive the unique
sequence of grammar rules that can produce that token sequence. It would be then
possible to create a parser in order to decode SIP messages.

However, parsers usually require the protocol grammar to be in a particular

form (typically, Yacc requires LR(1) grammar). Unfortunately SIP grammar is not of
type LR(1). In addition, even if it is LR(1), there is absolutely no guaranty that future
adjunctions will not modify this property of the grammar

In conclusion, this solution cannot be selected, as it would require rewriting

SIP grammar to make it compatible with our needs, and to repeat this operation every
time the protocol is extended, which does not match requirements concerning
maintainability of the codec.

6

6.2 Selected solution

6.2.1 T3devkit

6.2.1.1 Overview

T3DevKit is a project developed by IRISA which aims to provide tools and

libraries to help developing TTCN-3 codecs and adapters. It is composed of two main
elements: T3DevLib, a library of C++ classes that handle generic codec & adapter
functionalities, and T3CDGen, a tool that can generate a codec implementation
template from TTCN-3 source files. Protocol specific adaptations and codec
behaviour are then customised by adding pieces of code called “codets”. The global
integration of T3DevKit in a TTCN-3 project is shown in Figure 1.

Figure 1 T3DevKit integration (©IRISA http://t3devkit.gforge.inria.fr/doc/userref/)

6.2.1.2 Advantages and drawbacks

T3DevKit provides several advantages compared to the previously described

solutions. First of all, T3DevKit features a codec generator (T3CDGen) which
handles the creation of codec structure and removes the need to manually implement
lots of generic functions.

In addition, T3DevKit is tool-independent and does not rely on external SIP

(or other protocol) application. This is a very important point, especially for the
maintenance of the codec, as being dependent on an external application or library
means maintaining the interface between the codec and these external elements.

7

Concerning the maintenance of the codec, only the specific processing

concerning new types or modified types has to be added or updated. Everything else
remains unchanged and there is no need to revalidate old codec sections (except the
ones which interact with the new code).

T3DevKit also provides a stable interface to codet developers, and in case of

changes in the TCI API, no code modification are required in the manually generated
code to update the codec: the TCI related functions are all located in T3DevLib.

On the drawback side, following are the known issues extracted from the user
documentation:

 The library does not support the following types:
o float
o universal charstring
o address
o object id
o anytype

 TTCN-3 primitive subtypes (integers, octetstrings...) are not supported by the
CoDec generator, they need to be declared manually in a .h file provided by
the user.

 Type and field attributes (except the optional keyword) are ignored by the
CoDec generator.

 Remote procedure calls as well as broadcast and multicast communications are
not yet supported.

 Although ready to be handled internally, modules names are not fully
supported. Name clashes between identifiers from different modules should be
avoided when writing Abstract Test Suites.

 Nested type definitions are not supported.
 Imports statements are ignored by the generator, all the TTCN-3 type

definitions are imported by default.
 Separation of TRI and TCI specific code is hard to achieve
 TTCN-3 parser of T3CDgen has limited support of latest TTCN-3 language

features (should only be used with modules containing TTCN-3 types)

These drawbacks, which are mainly due to the fact that the project is still

under development and are will be addressed in the future, do not have any real
impact as far as SIP codec is concerned.

6.2.1.3 Design strategy

T3DevKit is designed to generate automatically a codec from the type definitions
from the TTCN-3 source files. The default behaviour is to encode and decode all the
fields of the message successively and concatenate the result. This default behaviour
generally needs to be customised so as to:

 handle syntactic elements that are not represented in the TTCN-3 types (e.g.
white space and delimiters,…)

 identify the position of each field when decoding a raw binary message

8

The customisation is possible by implemented additional functions named “codets”
that will be integrated in the final codec and that will be called by the generated
codec. For instance “SDP_Message::Predecode()” is a function called just before the
codec decodes a raw message of type SDP_Message. A codet is implemented as a
C++ member function. Any kind of processing can be done inside the body of the
function and it is possible to interact with the generated codec with the well-defined
API of T3Devlib. It is then possible to read or write data in the binary buffer and
make some prediction about the length or the presence of a field.

6.2.1.4 Encoder

The encoder mainly appends the syntactic element that do not appear explicitly in the
TTCN-3 message (but that can be derived from the structure of the message). This is
done by writing the delimiter in question in the buffer before and/or after the adequate
field.

Encoding of the “Conent-Length” field of the SIP messages requires more processing.
The length of the message body is not known in advance, the value provided by the
TTCN-3 code may be incorrect or not be available. Instead it is possible to fill it with
blank spaces and remembering the position of this value in the buffer. Then in the
PreEncode() and PostEncode() codets of the message body, the current position in the
buffer is saved and then used to compute and encode the value of the Content-Length
field.

6.2.1.5 Decoder

Implementing the decoder mostly consists of:
 validating the format of the message
 skipping the syntactic elements that are not represented in the TTCN-3

structure
 make predictions for the codec about the length of each fields (so that when

the generated codec decodes a variable-length field (typically a charstring) it
does not reads all the bytes until the end of the buffer, but stops at the real end
of the buffer.

Since the format of the SIP and SDP message is mostly described by a BNF
representation, it was decided to validate the input message and identify each field
using regular expressions.

A utility class named “Regex” was developed. It is implemented based on the portable
C++ BOOST regex library and implements perl regular expressions. Moreover it is
integrated partially with the T3DevKit API by providing functions to match the regex
on a part of the encoding buffer, to report easily the length of a field, to move the
position in the buffer at the beginning or the end of a matched group in the regex and
to report detailed error messages in case of mismatch.

9

7 Validation procedure

 In order to validate the correctness of the TTCN-3 codec implementation and
ensure its reliability, two complementary approaches have been used.

7.1 Loopback tests

The idea of this approach is to verify that a TTCN-3 representation of a
message can be encoded and then decoded correctly by the codec. Additionally, the
initial and final messages are check to be identical. By doing this, it is possible to
ensure that both the encoder and the decoder work in the same manner. Moreover, a
large variety of messages are generated and tested, so that they cover the complete
type system.

This method should quickly detect errors located in one part or the other of the

codec. However, if the same error is present both in coding and decoding functions,
then it might stay undetected. In addition it is important to note that it is not possible
to test all messages combination; therefore these tests will not permit to ensure 100%
reliability of the codec.

7.1.1 Test System Architecture

Figure 2 Loopback architecture

In loop back tests all test cases share the same structure. In fact the only

difference in each testcase is the top-level template used for the “send” and “receive”
operations.

testcase TC_LOOPBACK_REQUEST_0() runs on SipSimu {

 // Variables
 timer t_ac := 3.0;

 // Test Body
 sipPort.send(m_request_0);

10

 t_ac.start;
 alt {
 [] sipPort.receive(m_request_0) {
 setverdict(pass);
 }
 [] t_ac.timeout {
 setverdict(fail);
 }
 }
}

7.1.2 Template generation

TTCN-3 message templates are generated automatically by a script based on a
TTCN-3 type module. The main difficulty is to generate a reasonable amount of
templates: it is very easy to generate millions of template due to combinatory
explosion. To avoid this problem, it is important to carefully define the rules that will
be used for template generation. Ideally, these rules lead to the generation of a
minimum number of templates by keeping only the most interesting ones, from a
testing point of view.

7.1.2.1 Generation rules

The following generic rules have been selected for this project: Port primitives

are the starting point of the process. Complete templates are generated for each
primitive, using a recursive strategy and by applying the following rules:

 While processing a record, generate two templates, one containing
values for mandatory fields only, and one containing values for
mandatory fields and optional fields. Additionally, generate a
parameterised number of templates containing values for mandatory
fields and randomly selected optional fields. By doing this, extreme
case and some intermediate case templates are generated. Note: with
this method, each field is tested at least once.

 A set is processed like a record.
 While processing a union, generate one template per alternative.
 While processing a record of, generate different templates with

different list sizes. The number of templates and the sizes of the list
should be parameters.

 A set of is processed like a record of.
 While processing an integer field, generate different templates with

different values (minimum value, maximum value, and optionally
random values).

 While processing a string field (octetstring, bitstring,
charstring ...), generate different templates with different values
(short string, long string, and optionally random length strings).

 While processing a boolean field, generate two templates (true and
false).

 While processing enumerated field, generate all possible templates,
based value constraints.

11

 If a complex type as already been derived once in any of the already
generated templates, it should not be derived again (it is very likely
that the same codec function will be used), and should trigger the
generation of only one template.

 In addition to these rules, the template generator should offer the possibility to
use specific values for a particular field. This way, it is possible to test more
intensively some important fields.

7.1.2.2 Template generator design

The generator developed within STF370 is a Perl script which receives type

and port definitions as input and produces three files: one containing all the generated
message templates and sub-templates, a second file containing the generic test cases
and a test control file.

Before using the generator, some values need to be adjusted. First of all, the

generic testcase pattern can be modified. It is stored in the global variable
$testcaseTemplate. Default values are stored in the global hashmap
%defaultValues and initialized through the function initializeDefaultValues().
This hashmap stores two kinds of values:

 default values used for basic types (charstring, integer, …);
 values for specific fields in a complex type (typically record). In this

case, the syntax for hash entries is Type<space>Fieldname.

The following table shows some example entries:

Hash entry Hash value Comment
Charstring ['"a"', '"abcde"',

'"abcdefghij"']
Three possible values for
charstrings

Integer [1, 2, 3] Three possible values for
integers

Boolean ["true", "false"] Boolean can be true or false
StatusLine sipVersion ['"SIP/2.0"'] Field sipVersion in record

StatusLine will be filled with
value “SIP/2.0”

DeltaSec ['"1"', '"123456"',
'"123456789"']

Three possible values for
DeltaSec fields. In this case
Deltasec is an alias of
charstring. This entry will
override default charstring

12

values.
SDP_contact addr_or_phone ['"test_email@etsi.org"',

'"+33 4 - 9294 4200"']
Field addr_or_phone in
SDP_contact record will be
filled with these two specific
values.

Figure 3 Examples of default and specific values

The generator is typically used as follow. The output files are created in the

current directory.

$ cat compiledTypes.txt | SipCodecTestGenerator.pl

Among its known limitations, this Perl script does not feature a complete

TTCN-3 parser; only types and port definitions can be analyzed and any other
TTCN-3 instruction causes a failure. It is also important to notice that so far, the Perl
script does not support comments either.

7.2 Torture tests

In the case of an encoder input data is controlled and cannot go beyond the
TTCN-3 typing possibilities. The decoder however can receive a huge variety of
encoded messages. Therefore it is essential to ensure that the decoder will be robust
enough to deal with these messages and to decode them. To achieve this goal, this
second validation approach makes use of torture messages defined in RFC 4475. Each
of these messages presents some characteristics which would cause trouble to weak
decoders.

7.2.1 Test System Architecture

These tests rely on the injection by the SUT adapter of encoded messages
based on the testcase name and on timing after TriMap() call.

Figure 4 Torture architecture

bool SipTorturePort::Map (const PortId& connected_port_id)

13

{
 string filename ("data/");
 filename += GetTestcaseId().GetObjectName();
 filename += ".dat";

 cout << "Reading testcase data from " << filename << endl;

 ifstream in (filename.c_str(), ios_base::in |
ios_base::binary);

 if (!in) {
 cerr << "Cannot open " << filename << endl;
 return false;
 }

 in.seekg (0, ios_base::end);
 streampos size = in.tellg();
 in.seekg (0, ios_base::beg);

 char* buff = new char[size];
 in.read (buff, size);

 EnqueueMsg (connected_port_id, MappedBitstring (buff,
size*8));

 delete buff;

 return in.good();
}

 All test cases look more or less the same since templates are only specified at
the message type level, e.g., any INVITE_Request. The verdict is assigned depending
on decoding result. In the following test cases example a SIP message is actually not
valid and should therefore only set the verdict pass if it could not be decoded.

 testcase TC_BADASPEC_I() runs on SipSimuEx
 {
 tc_defaultTimeout.start;
 alt
 {
 []sipPort.receive(OPTIONS_Request:?)
 {
 setverdict(fail);
 }
 []sipPort.receive
 {
 setverdict(pass);
 }
 []tc_defaultTimeout.timeout
 {
 setverdict(fail);
 }
 }
 }

OPTIONS sip:user@example.org SIP/2.0N)
Via: SIP/2.0/UDP host4.example.com:5060;branch=z9hG4bKkdju43234

14

Max-Forwards: 70
From: "Bell, Alexander" <sip:a.g.bell@example.com>;tag=433423
To: "Watson, Thomas" < sip:t.watson@example.org >
Call-ID: badaspec.sdf0234n2nds0a099u23h3hnnw009cdkne3
Accept: application/sdp
CSeq: 3923239 OPTIONS
l: 0

8 Installation instructions

8.1 T3DevKit installation

8.1.1 Standard installation

1. Install Cygwin (http://www.cygwin.com/), including the following packages:

 gcc
 gcc-core
 gcc-g++
 gdb
 subversion
 flex
 bison
 boost
 boost-devel
 libboost
 make
 diffutils
 autoconf
 automake

NOTE: do not install gcc4 (there is an incompatibility with telelogic's runtimes)

2. Download the sources from the svn repository

 authenticated access:

svn co --username login
https://scm.gforge.inria.fr/svn/t3devkit/t3devkit/branches/stf370/
t3devkit

or

15

svn co

svn+ssh://username@scm.gforge.inria.fr/svn/t3devkit/t3devkit/branches
/stf370/ t3devkit

 anonymous access:

 svn co
svn://scm.gforge.inria.fr/svn/t3devkit/t3devkit/branches/stf370/
t3devkit

3. Generate the configuration scripts and makefiles templates

 cd t3devkit && ./autogen.sh

4. Make your TTCN-3 tool accessible (there should not be any space in their
path)

 mkdir /opt
 ln -s /cygdrive/c/Program\ Files/Elvior /opt/
 ln -s /cygdrive/c/Program\ Files/Telelogic /opt/

5. Configure and install the toolkit as explained in the user manual

 ./configure --with-telelogic=/opt/Telelogic/Tester_3.1
 make
 make install

Note: the configure looks for boosts headers in /usr/include/boost by default, in
the case it does not find them, then you may need to make a link to the adequate
directory:

 ln -s boost-1_33_1/boost /usr/include/

6. Compile and execute a sample test suite to verify the installation

 cd examples/DNSTester
 make
 make exec

7. Troubleshooting

 If you are using gcc version 4 then the executable test suite will very likely
return immediately with the error code 5. This is a known incompatibility between
Telelogic's runtime and gcc4 on cygwin and it should not happen since you have read

16

the manual from the beginning. This may happen anyway if you have both versions
installed on the system. In this you have two workaround alternatives:
 - uninstall the gcc4 packages
 - ensure that the gcc and g++ map to gcc version 3 (try to execute gcc --
version or g++ --version). This can be done by placing a shell script named
gcc/g++ in /usr/local/bin that executes the right compiler (gcc-3/g++-3)

8. Have fun!

8.1.2 Addendum: installation with Message Magic

a. Perform steps 1 to 4 of the previous section and include the following
packages in the installation of cygwin:

 gcc-mingw
 gcc-mingw-core
 gcc-mingw-g++

b. Get the latest boost binaries compiled for mingw32 (it is available on the H:
drive) and extract it into c:\cygwin\opt

 H:\STF370\WP2 - IMS case study\codec\t3devkit\boost-mingw-
gcc345-1.38.0.tar.gz

 make a symbolic link to make it easily accessible:

 ln -s boost-mingw-gcc345-1.38.0 /opt/boost-mingw

c. Configure the toolkit as explained in the user manual

 ./configure --target=mingw32
--with-mmagic=/opt/Elvior/MessageMagic5
--with-target-cppflags=-I/opt/boost-mingw/include
--with-target-ldflags=-L/opt/boost-mingw/lib

d. Compile host applications first (they require different options)

 (cd t3cdgen && make CC=gcc CXX=g++ LDFLAGS= CPPFLAGS=)
 (cd t3devlib && make t3devkit-config.exe CXX=g++ LDFLAGS=
CPPFLAGS=)

e. Compile the rest of the toolkit and install it

17

 make
 make install

f. Compile and execute a sample CoDec to verify the installation

 cd examples/HelloWorld
 make CPPFLAGS='-Ic++ -I/opt/boost-mingw/include'
T3DK_LDFLAGS='-L/opt/boost-mingw/lib'

