1 TTCN-3 IOT Adapter Design document

2 **Contents**

3	T	TCN-3 10	OT Adapter Design document1	L
4	1	Intro	oduction4	ļ
5	2	Desi	gn Objective 4	ļ
6	3	Abb	reviations4	ļ
7	4	Desi	gn proposals for receiving of traffic capture5	5
8		4.1	All traffic on single (mirrored) switch port5	5
9		4.2	Traffic on multiple switch ports (no mirroring)6	5
10		4.3	Discussion	1
11	5	Soft	ware design	7
12		5.1	Requirements	3
13 14 15 16 17		5.2 5.2.1 5.2.2 5.2.3 5.2.4	Test adapter configuration)) 2
18	6	ттсі	N-3 message type definitions13	3
19		6.1	TTCN-3 port description13	3
20 21 22 23 24		6.2 6.2.1 6.2.2 6.2.3 6.2.4	Merging of captured traffic files	5 5 5
25		6.3	Setting of filter criteria 17	1
26		6.4	Starting and stopping of traffic capture 18	3
27		6.5	Equipment operation messages18	3
28		6.6	Test case suite for Adapter regression tests 19)
29	7	Dep	loyment diagram of the test adapter19)
30	8	Inte	raction of Adapter and PCAP traffic capture processes	L
31		8.1	Interactions between TTCN-3 script and Adapter 21	L
32		8.2	Interaction between the Adapter and the traffic capture process	2
33	9	Clas	s diagram of the Adapter component22	?
34		9.1	LowerTestAdapter class description23	3
35		9.2	UpperTestAdapter class description 23	3
		TTCN-3 I	OT Adapter Design document 10 August 2010 Release 0 6 DRAFT	

36	9.	3	Traffic capture related classes description	24
37 38 39 40 41	9.	4 9.4.1 9.4.2 9.4.3 9.4.4	Helpers classes description TTCN-3 messages decoding helpers Socket implementation Log framework BOOST framework	.24 .24 .24
42	9.	5	Common development rules	24
43	10	Impl	ementation details	25
44	10).1	LowerTest component	25
45 46 47 48 49 50 51 52 53 54).2 10.2.1 10.2.2 10.2.4).3 10.3.1 10.3.2 10.3.2	2 Sequences diagrams 3 Class diagrams 4 Human friendly GUI 4 TrafficCapture component 1 Usage 2 Architecture 3 Functional Specification	. 25 . 25 . 26 . 26 . 26 . 26 . 27 . 28
55	11	Test	ing of Test Adapter	31
56	12	SVN	repositories	31
57	13	Deve	lopment tools	31
58	14	Refe	rences	32
59 60	15	Revi	sion History	32

61 List of Tables

62

02		
63	Table 1: Test adapter software requirements	9
64		

65 List of Figures

67	Figure 1: Design with a switch providing single (mirrored) switch port for all
68	traffic in context of IMS interoperability testing
69	Figure 2: Design with a switch providing multiple ports for traffic in context of
70	IMS interoperability testing7
71	Figure 3: Test Adapter Software Architecture10
72	Figure 4: An example of encoded GeneralConfigurationReq message in
73	hexadecimal12
74	Figure 5: An example of encoded UE_REGISTRATION equipment operation
75	message12
76	Figure 6: TTCN-3 types that define GeneralConfigurationReq/Rsp15

77	Figure 7: Example TTCN-3 parameter setting for general configuration	message
78		17
79	Figure 8 TTCN-3 types for Start/StopTrafficCaptureReq/Rsp	18
80	Figure 9 TTCN-3 types for Start/StopTrafficCaptureReq/Rsp	18
81	Figure 10 TTCN-3 types for Start/StopTrafficCaptureReq/Rsp	19
82	Figure 11: Test suite for Adapter regression testing	19
83	Figure 12: Lower Test Adapter Deployment diagram	20
84	Figure 13: Message exchanges between TTCN-3 script and the Adapter	21
85	Figure 14: Message exchanges between TTCN-3 script and the Adapter	22
86	Figure 15: Adapter class diagram	23
87	Figure 16: Class diagram of the upper test adapter	26
88	Figure 17: TrafficCapture Class Diagram	28
89	Figure 18: Sequence diagram of typical TrafficCapture session	29
90		

93 1 Introduction

94

The purpose of this document is to present and describe issues and design choices made while developing a generic test adapter suited for TTCN-3 interoperability testing within STF370.

98 For further information the reader is referred to [Fwk] for global view of 99 methodology and framework for automated interoperability testing and [IMS arch] for 100 an overall view of the IMS interoperability test architecture which has served as the 101 main source for design requirements.

103This document has been written with the assumption that the reader is well versed104in C++ and TTCN-3 [core] programming. Also good knowledge of the operation of105TRI [TRI] and TCI [TCI] standards is assumed.

106

102

107 2 Design Objective

108

The main purpose of the TTCN-3 interoperability test adapter is to implement the real test system interface [core, TRI] of the TTCN-3 IMS interoperability test system described in [IMS arch], i.e., the handling and transport of TTCN-3 messages send or received via abstract TTCN-3 test system interface ports and different EUTs. Nevertheless it has been attempted to keep the adapter design completely independent on IMS specific testing.

115 The adapter should be designed primarily for allow the use of the interoperability 116 test system in the context of an interoperability event. It should however also be 117 possible to use it in the context of a test bed. Note that these usage scenarios come 118 along with a different set of constraints. For example, in the context of an 119 interoperability event it is not until the day of the event that you know which products 120 and version of these products will participate whereas in a test bed that information is 121 better known. Therefore automation of equipment operation is much easier to realize 122 in a test bed than for an interoperability event. In addition interoperability events a 123 restricted to a limited amount of times (usually a week) whereas time is not so much a 124 constraint in the scenario of a test bed – giving much room for adaptation updates.

The adapter conceptually splits into three parts: 1) an upper test adapter which provides an implementation of vendor specific operation of different EUTs involved in an interoperability test, 2) a lower test adapter which captures traffic and isolates requested payloads based on filter criteria specified by an interoperability test suite and forwards them as raw data to the test suite and 3) a TTCN-3 platform adapter implementing timers.

- 131 **3** Abbreviations
- 132

134

133 For the purposes of the present document, the following abbreviations apply:

TTCN-3 IOT Adapter Design document

10 August 2010 Release

135	CN	Core Network
136	DNS	Domain Name System (protocol)
137	EUT	Equipment Under Test
138	GUI	Graphical User Interface
139	HTTP	Hypertext Transfer Protocol
140	IP	Internet Protocol
141	IMS	IP Multimedia Subsystem
142	ISDN	Integrated Service Digital Network
143	ISUP	ISDN User Part
144	OS	Operating System
145	PCAP	Packet Capture
146	SIP	Session Initiation Protocol
147	SSH	Secure Shell
148	TCI	TTCN-3 Control Interface
149	TCP	Transmission Control Protocol
150	TRI	TTCN-3 Runtime Interface
151	TTCN-3	Testing and Test Control Notation 3
152	TE	TTCN-3 Executable (as defined in [TRI] and [TCI]
153	UE	IMS User Equipment
154		

155 4 Design proposals for receiving of traffic capture

This chapter evaluates different design proposals for integrating the TTCN-3
 interoperability test adapter with physical traffic capture.

160 4.1 All traffic on single (mirrored) switch port

161 This design proposal assumes that all traffic produced in interoperability testing is 162 mirrored by a switch on a single port. Multiple cascaded switches may be used to 163 combine multiple monitoring ports into one physical port which is then connected to 164 the computer running the test adapter via its network card.

TTCN-3 IOT Adapter Design document

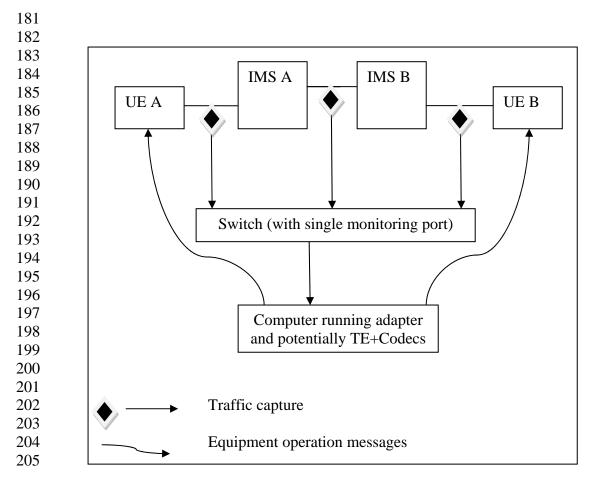


Figure 1: Design with a switch providing single (mirrored) switch port for all traffic in context of IMS interoperability testing

207 4.2 Traffic on multiple switch ports (no mirroring)

This solution requires that the computer running the test adapter has multiple network interface boards. However this solution does not require the implementation of switches that support mirroring.

<u> </u>
212
213
214
215
216
217
218
219
220
221
222
223
224

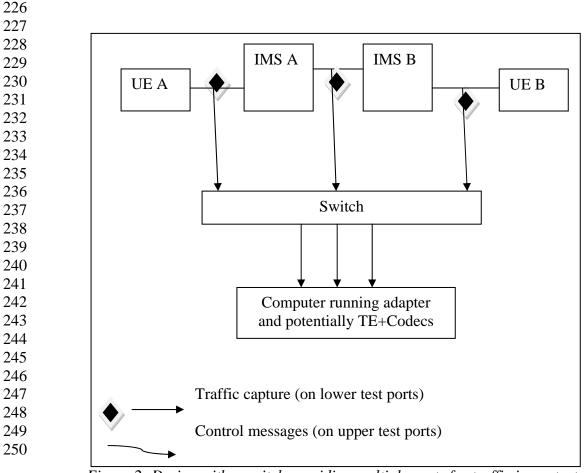


Figure 2: Design with a switch providing multiple ports for traffic in context of IMS interoperability testing

4.3 Discussion

The first proposal has the main advantage that it is easy to deploy. We can use essentially any laptop with, e.g., an Ethernet card. The main problem is that switches with mirroring capability may be hard to find.

The second solution will eventually impose some limitations on the number of network cards, i.e., interfaces that could monitored simultaneously. Note that a standard laptop usually only provides a single Ethernet card.

259

It was decided to use the first proposal. This however implies that the component(s), e.g., switches, used during testing for physically capturing traffic must provide the capability to monitor and mirror several network interfaces.

263

264 **5** Software design

266 This chapter introduces the requirements taken into account for the software 267 design of the test adapter.

268 **5.1 Requirements**

269

270

The test adapter software shall address the following requirements:

Requirements	Description
On/Off line mode	The adapter shall support test execution with traffic
	capture in real time (live) as well as from recorded
	traffic capture (offline)
Dynamical adapter	The adapter shall be configurable from TTCN-3 code
configuration	as much as possible.
Merge in off line mode	In off line mode, it should be possible to handle
	several recorded traffic capture and merge them into a
	single file, respecting time stamps
Time stamp Offset	The adapter shall be able to start processing recorded
	traffic from a specified time stamp instead of the
	beginning of the file
Filtering for specific	The adapter should be flexible and allow isolation of
protocols	protocols from traffic capture requested by TTCN-3
	components
Support of Ethernet capture	The adapter shall at least support Ethernet traffic
based on PCAP format	capture based on PCAP
Support for SIP and DNS	The adapter shall at least be able to filter SIP and DNS
filtering	messages based on IPv4 address and port information
Support for IPv4 based	The adapter shall at least be able to filter traffic capture
filtering	based on IPv4 address and port information for at least
	two end points. Each endpoint IP information may
	include multiple IP addresses and ports.
Support of IP and TCP	The adapter shall be able to handle IP and TCP
fragmentation	fragmentation
Logging of messages sent	
to TE	exchanged with the TE as well as a time stamp.
OS independence	The adapter should not be operating system or
	hardware dependent. Ideally, the adapter would be
	useable under both Windows and UNIX-like operating
	systems.
Use of TRI C mapping	The adapter shall use the TRI C mapping in order to be
	reusable with the largest number of TTCN-3 tools.
Timers	The adapter shall implement TTCN-3 timer handling in
	real time.
Support for equipment	1 11 11
operation GUI	operation messages into interactions via a GUI for
	equipment operators. More specifically it should
	provide one GUI window per TTCN-3 equipment user
	component. Interactions shall be configurable as well
	as the computer where each GUI instances are
	supposed to run

TTCN-3 IOT Adapter Design document

10 August 2010 Release

Extensibility	The adapter shall allow easy extension for filters for non SIP or DNS protocols. Similarly it shall support the integration of non-PCAP traffic capture tools. Also it should allow integration of vendor specific protocols
	for equipment operation

Table 1.	Test	adanter	software	requirements
Tuble 1.	1631	uuupier	sonware	requirements

At the point of writing there was no requirement for external functionimplementations.

273

280

284

285 286

5.2 Software design

In order to fulfil the above requirements it was decided to design test adapter softwarearchitecture with the following main components:

- A Lower Test Adapter which provides traffic capture processing
 functionality which includes handling of IPv4 and TCP fragmentation,
 isolation of protocol messages, etc
 - A PCAP capture process which interacts with the Lower Test Adapter
- A Upper Test Adapter which converts TTCN-3 equipment operation
 messages into EUT operator instructions and can process their feedback
 based on a terminal window
 - TRI implementation
 - Codecs for decoding of configuration message request and encoding responses in the adapter
 - Timer handling implementation
- 287 288

The design decision was made to use the IRISA t3devkit framework (see reference [t3devkit]) to allow the implementation of the adapter in C++ in order to profit from object oriented programming benefits. The t3devkit maps the TRI C interface into a C++. Note that there is this C++ is not compliant to the standardized TRI C++ mapping.

- 295 Real-time timer handling is included as part of the t3devkit implementation.
- 296

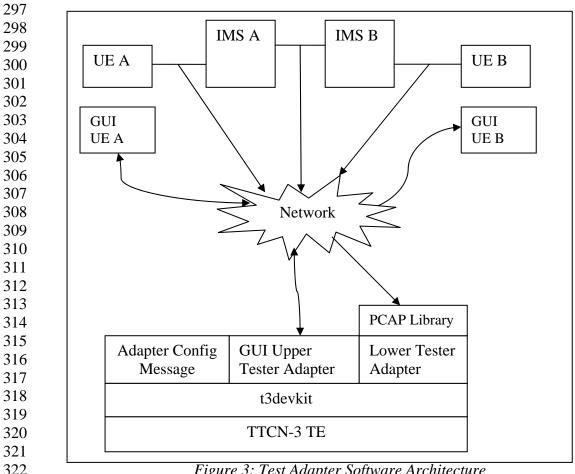


Figure 3: Test Adapter Software Architecture

324 Note that the network component includes any network related equipment 325 including switches etc. Also the Platform adapter is not shown in this figure. 326

327 Note that the GUI Upper Tester Adapter component could also be replaced with 328 code that directly maps equipment operation messages to vendor specific primitives.

5.2.1 Test adapter interfaces 329

330 The proposed test adapter has three types of interfaces:

- One with the TTCN-3 TE which implements part of the TRI interface
- One with the traffic capture, i.e., the PCAP capture library
- One with EUT operator, i.e., the GUI which interacts with the equipment operator
- 334 335

331

332 333

323

5.2.2 Test adapter configuration 336

337 In order to fulfil the dynamic adapter configuration requirements, the test adapter 338 supports the following primitives:

339 A general configuration primitive which is used to communicate 340 parameters which are not specific to a specific monitored EUT interface. 341 These parameters include an indication for live vs. offline capture mode, 342 record captured traffic into file (only in live mode), Ethernet network 343 interface card information, IP address of the PCAP capture process, (list

TTCN-3 IOT Adapter Design document

344 345 346 347 348 349 350 351	 of) traffic capture files (only in offline mode), timestamp offset (only in offline mode), etc. Start and stop capture primitives Primitive to specify interface specific parameters for monitoring purposes. Using these parameters, the Lower Tester Adapter isolates protocol messages and dispatches the encoded messages properly to the TTCN-3 component that has requested the filter.
352	5.2.2.1 Adapter configuration message encoding
 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 	 When TTCN-3 TE and test adapter exchange messages via the TRI, the TRI requires that these messages have to be encoded. The following encoding rules are used to encode adapter configuration messages: The message type is encoded in the first octet except for capture messages which are pure raw data (see below table for details) Each information element of a message is encoded with < length><value> where < length> is always encoded on 2 octets</value> Text string values are kept as they are Integer values are always encoded in their integer representation using 1 octet Lists of information elements are encoded using <number of="" parameters=""><{< length><value>}+ >, where <number of="" parameters=""> shall use 2 octets and <length> <value> are encoded as described above</value></length></number></value></number> Sequences of information elements; note that the position of list information elements is assumed to be known, i.e., hardcoded Union elements are encoded using index.stats.stats.stats.stats.stats.stats">https://walues.stats.s
373 374 375	using <length> (or a <number of="" parameters=""> for the lists of information elements) set to '0000'H</number></length>

Message type	Octet Value Encoding
GeneralConfigurationReq	0x00
GeneralConfigurationRsp	0x01
SetFilterReq	0x02
SetFilterRsp	0x03
StartTrafficCaptureReq	0x04
StartTrafficCaptureRsp	0x05
StopTrafficCaptureReq	0x06
StopTrafficCaptureRsp	0x07
EquipmentOperationReq	0x08
EquipmentOperationRsp	0x09

Table 1. Adapter configuration and equipment operation messages and their message type encoding

379	• The Figure 4 shows an example of an encoded GeneralConfigurationReq
380	message in hexadecimal string format
381	• In the sequence '000000093132372E302E302E31'H:
382	 '0009'H is the length of the captureProcessIpAddress
383	information element value "127.0.0.1"
384	 '3132372E302E302E31'H is the text string "127.0.0.1"
385	itself
386	
387	00000093132372E302E302E3100000000000157D00000000000007AE0000
388	00000666696C7465720000005B72706361703A2F2F5C4465766963655C4E50465F
389	7B46333031333632462D374444422D343237432D423436352D38324337384543443
390	34437347D3B72706361703A2F2F5C4465766963655C4E50465F7B44756D6D7949
391	666163657D

Figure 4: An example of encoded GeneralConfigurationReq message in hexadecimal

392	• The Figure 5 shows an example of an encoded equipment operation
393	message in hexadecimal format
394	• In this sequence '000F55455F524547495354524154494F4E'H:
395	• '000F'H is the length of the cmd information element value
396	"UE_REGISTRATION"
397	 55455F524547495354524154494F4E is the text string
398	"UE_REGISTRATION" itself
399	 '0003'H is the number of parameters in the params list
400	information element
401	 The following octets are the parameters information
402	element values "userSIP", "3344123432" and "123456"
403	each preceded by their 2 octet length
404	
405	000000F55455F524547495354524154494F4E00000003000000775736572534
406	950000000A333334343132333433320000006313233343536

Figure 5: An example of encoded UE_REGISTRATION equipment operation message

407

408 5.2.3 Traffic capture

The adapter has been designed to allow also integration of non-PCAP based trace processing. In this case the PCAP library would be replaced by another traffic capture tool library. The integration of such other tools would however require a vendor specific implementation of the communication with the Lower Test Adapter and is beyond the scope of this document.

414

415 5.2.3.1 Merge of multiple trace files

The test adapter assumes all traffic capture files to be merged are located in the same directory. In the case of the PCAP library implementation the merged file is generated during the execution of a test case in that same directory.

- 420 Note that this feature is only available in offline mode.
- 422 Note that should the test execution be repeated it is advised to use the merged file423 instead of the file list to reduce test execution time significantly!
- 424

425 5.2.4 Possibilities for handling of equipment operation messages

- 426 There are different ways to handle the TTCN-3 equipment operation messages:
- Implement a human friendly GUI to guide the user to operate manually the EUT as specified in the command. Such an approach is required when the interoperability test is executed with real end user equipment, e.g., a mobile terminal with a IMS UE
- Implement a software component which composes, sends, and receives encoded SIP messages and therefore acts like a replacement of the UE.
 This approach is only possible when the equipment is not a EUT as in the case of the UE in the IMS NNI interoperability testing
- Implement software that is directly integrated with the equipment. This 435 436 software is product specific in case the operation of the EUT is not 437 standardized (which is usually the case). This allows automatic control of 438 equipment and removes the need for a human equipment operator. This 439 solution also requires a part integrated with the test system. The 440 communication between the integrated software and the TTCN-3 test 441 system can via achieved either via telnet, ssh, HTTP/HTTPS, or TCP/IP 442 connection and a port managed by XInetd.

444 5.2.4.1 Discussion

The human friendly GUI solution was selected in the test adapter software design. Due to the variety of different interfaces for the operation of EUTs and their predominately proprietary nature, it is very hard or even impossible to develop only one automatic mechanism to operate EUT or other equipment. In addition, the adapter was designed for IMS NNI interoperability testing where the test system will be used in the context of an interoperability event.

451

443

452 6 TTCN-3 message type definitions

This chapter provides an overview of TTCN-3 port and message types used to communicate with the Adapter via the abstract TTCN-3 TSI. Note that the adapter is not directly dependent on the IMS interoperability test suite but rather the TTCN-3 interoperability library called LibIot.

457 6.1 TTCN-3 port description

458 Three types of TSI ports are defined in LibIot:

Adapter port is used to receive and send general configuration messages,
 setting of test component specific filter criteria, and for controlling traffic
 capture.

- Monitor data port is used by TTCN-3 components to receive protocol messages from the lower test adapter.
 equipment operation port is used by TTCN-3 components to send and receive equipment operation messages, e.g., to operate an IMS UE
- 466

467 6.2 TTCN-3 messages description

The Figure 6 shows the TTCN-3 message type for general adapter configuration. 468 469 These types are defined in the LibIot_TypesAndValues TTCN-3 module 470 type record of charstring PhysicalInterfaceList; 471 472 473 type record LiveCapture { PhysicalInterfaceList physicalInterfaces, 474 recordMode RecordMode 475 476 } 477 478 type enumerated RecordMode { 479 e norecord, 480 e_record 481 } 482 483 type record of charstring FileList; 484 485 type record MergeFileList { FileList mergeFileList, 486 487 charstring mergeFilePath 488 ł 489 490 type record CaptureSource { 491 charstring singleFile, // e.g., PCAP file 492 MergeFileList mergeFileList 493 494 } 495 type record OfflineCapture { 496 offset. 497 UInt32 498 CaptureSource captureSource 499 } 500 501 type UInt16 PortNumber; 502 503 type union CaptureMode { 504 LiveCapture liveCpature, OfflineCapture offlineCapture 505 506 } 507 type record GeneralConfigurationReq { 508 509 charstring captureProcessIpAddress,

510	PortNumber captureProcessPort,
511	CaptureMode captureMode
512	}
513	
514	type record Status {
515	FncRetCode code, charstring reason optional
516	}
517	
518	type record GeneralConfigurationRsp
519	{
520	Status status
521	}
522	

Figure 6: TTCN-3 types that define GeneralConfigurationReq/Rsp

6.2.1 Record mode 523

This parameter is used to control the recording of traffic capture in a file in live 524 525 capture mode. The name and location of the output file is selected based on the 526 naming convention described in the chapter 5.2.2.1.

527

6.2.2 Merging of captured traffic files 528

529 If the mergeFileList is selected in the CaptureMode union and this field 530 contains a list of the traffic capture file names in the mergeFileList field and a 531 mergeFilePath field that contains a directory name where the merged file is to be 532 stored. The traffic capture process will then perform, e.g., a PCAP merge operation and store the result at the specified location. 533

534

535 Note that the traffic capture component will provide the name of the merged 536 file.

537

6.2.3 List of physical interfaces 538

539 In the live capture mode the physicalInterfaces field allows to specify a list of physical interfaces, e.g., Ethernet card information. 540

541 6.2.4 Example of setting general adapter configuration message 542 values in TTCN-3 543

E 1 1

	TTCN-3 IOT Adapter Design document 10 August 2010 Release	
552		
551	modulepar float PX_EUT_TRIGGER_RESPONSE := 5.0;	
550	*/	
549	response after command has been sent	
548	* @desc Maximum time limit used by trigger component for waiting for EUT	
547	*	
546	/**	
545	group adapterGeneralConfiguration {	
544		

	0.6 DRAFT
002	TTCN-3 IOT Adapter Design document 10 August 2010 Release
602	* Traffic capture filtering.
601	* @desc
600	/**
599	
598	7DDB-427C-B465-82C78ECD3D74};rpcap://\Device\NPF_{DummyIface}";
597	modulepar charstring PX_IOT_IFACES := "rpcap://\Device\NPF_{F301362F-
596	*/
595	* Use ';' to separate the interfaces
594	* List of the network interfaces to monitor.
593	* @desc
592	/**
591	
590	modulepar integer PX_IOT_TIMESTAMP_OFFSET := 1966;
589	*/
588	* Defines the time stamp offset to start playing record traffic capture file.
587	* @desc
586	modulepar charstring PX_IOT_FILE_MERGE_PATH := "/tmp"; /**
585	*/
584	* Defines the location of the files to merge.
583	* @desc
582	/**
581	
580	"TD_IMS_0001_11.pcap;TD_IMS_0001_19.pcap;TD_IMS_0020.pcap";
579	modulepar charstring PX_IOT_FILE_MERGE_LIST :=
578	*/
577	* Defines list of the files to merge.
576	* @desc
575	/**
574	
573	modulepar RecordMode PX_IOT_RECORD_MODE := e_norecord;
572	*/
571	* Defines if the record traffic capture mode must be activated or not.
570	* @desc
569	/**
568	
567	"TD_IMS_0001_19.pcap";
566	modulepar charstring PX_IOT_EXECUTION_FILE :=
565	*/
563 564	* In case of offline mode, it defines the Pcap file to play.
562 563	* @desc
562	/**
560 561	
559 560	modulepar CaptureMode PX_IOT_EXECUTION_MODE := e_live/*e_offline*/;
558 559	
557 558	*/ ATS gets messages form a trace file.
556 557	 * the ATS get messages form the EUT in realtime. IN offline mode the * ATS gets messages form a trace file.
555	in which mode the ATD should be excedded. In reathing mode
554	* @desc * in which mode the ATS should be executed. In realtime mode
553	,
552	/**

*/

605

606

607 608

608 609 } // group adapterGlobalConfiguration

Figure 7: Example TTCN-3 parameter setting for general configuration message

modulepar charstring PX_IOT_TRAFFIC_CAPTURE_FILTERS := "(ip.proto

== 0x11 && udp.port == 5060 && (ip.addr == 172.31.42.2 || ip.src == 172.31.42.3 ||

ip.src == 172.31.42.4 || ip.src == 172.31.42.5 || ip.src == 172.31.42.50))";

610

615

611 6.3 Setting of filter criteria

612 These messages are used by TTCN-3 test components to request their specific 613 filtering of traffic capture. The adapter combines all filter criteria automatically whne 614 it receives a StartCaptureRequest.

616	
617	type UInt16 PortNumber;
618	
619	type record of PortNumber PortNumberList;
620	
621	type record IpInterfaceInfo {
622	charstring domainName optional,
623	IpAddress IpAddress,
624	PortNumberList portNumbers
625	}
626	
627	type record of IpInterfaceInfo IpInterfaceInfoList;
628	
629	type union InterfaceInfo {
630	IpInterfaceInfoList IpInterfaceInfo
631	}
632	
633	type record (2infinity) of InterfaceInfo InterfaceInfoList;
634	
635	type enumerated ProtocolFilter {
636	e_sip,
637	e_dns
638	}
639	
640	type record SetFilterReq {
641	ProtocolFilter protocol,
642	InterfaceInfoList interfaceInfos
643	}
644	
645	type record Status {
646	FncRetCode code, charstring reason optional
647	}
648	

649	type record SetFilterRsp	
650	{	
651	Status status	
652	}	
653		

Figure 8 TTCN-3 types for Start/StopTrafficCaptureReq/Rsp

655 6.4 Starting and stopping of traffic capture

These messages are used by the adapter process to send its filter to the TrafficCapture process and to command it to start or stop capturing traffic.

658	1 1
659	
660	type record StartTrafficCaptureReq { }
661	
662	type record Status {
663	FncRetCode code, charstring reason optional
664	}
665	
666	type record StartTrafficCaptureRsp {
667	StatusCode result
668	}
669	
670	type record StopTrafficCaptureReq { }
671	
672	type record StopTrafficCaptureRsp {
673	StatusCode result
674	}

Figure 9 TTCN-3 types for Start/StopTrafficCaptureReq/Rsp

675

676 6.5 Equipment operation messages

677	These messages are used to request the operation of a EUT or other equipment
678	during a test.
679	type record of charstring ParameterList;
680	
681	type charstring EquipmentCommand;
682	
683	type record EquipmentOperationReq {
684	EquipmentCommand cmd, ParameterList params optional
685	}
686	
687	type record Status {
688	FncRetCode code, charstring reason optional
689	}
690	
691	type record EquipmentOperationRsp {
	TTCN-3 IOT Adapter Design document 10 August 2010 Release
	0.6 DRAFT

692	Status status	
693	}	

Figure 10 TTCN-3 types for Start/StopTrafficCaptureReq/Rsp

694

6.6 Test case suite for Adapter regression tests 695

This chapter introduces the different tests cases developed to test the Adapter 696 functionalities. The code below shows these test cases suite: 697

698	
699	control {
700	execute(TC_GeneralConfigurationMessageOffLineMode());
701	execute(TC_GeneralConfigurationMessageLiveMode());
702	execute(TC_GeneralConfigurationMessageMerge());
703	execute(TC_TriggerUERegister());
704	execute(TC_TriggerUERegisterUEDeRegister());
705	execute(TC_StartStopCapture());
706	execute(TC_Monitoring());
707	execute(TC_TOTO());
708	execute(TC_IMS_0001());
709	}

Figure 11: Test suite for Adapter regression testing

710 To be continued by Yann

711

7 Deployment diagram of the test adapter 712

713

In order to specify the most open and flexible software architecture as possible, 714 715 the PCAP traffic capture component has been implemented as an independent process 716 from the other adapter implementation, so that it can be executed by a remote computer if needed. In the default configuration the PCAP traffic capture process is 717 assumed to be hosted on the same computer as the main adapter process. 718

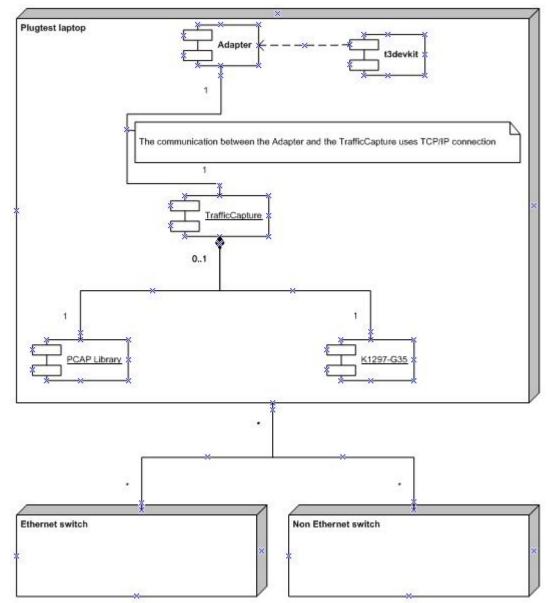


Figure 12: Lower Test Adapter Deployment diagram

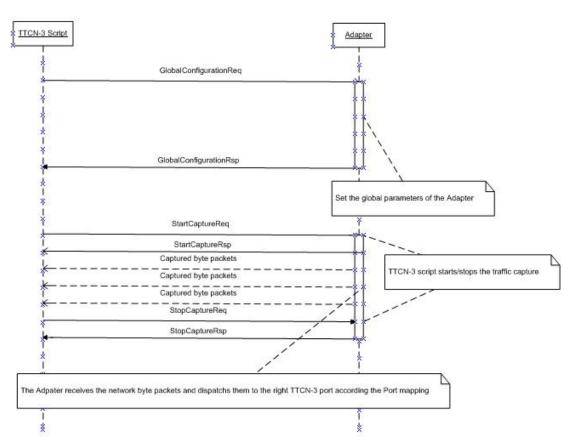
The figure above shows a configuration where the same laptop is assumed to host both Adapter and Traffic Capture processes. This laptop could be connected either to an Ethernet switch or non Ethernet equipment or both. A Tektronix K1297-G35 with one or more SS7 boards could be an example of a non-PCAP traffic capture tool. Note that this adapter implementation does not include any K1297-G35 specific code and is just here as an example.

In this case, Adapter and TrafficCapture processes could communicate on local host mode, e.g., IP address could be 127.0.0.1:5501. The Traffic Capture process always acts as a server and the Adapter process as a client. Both use the port 5501.

For installation of the adapter, please refer to the Installation Procedure file
located here: <u>H:\STF370\WP2 - IMS case study\adapter</u>.

736 8 Interaction of Adapter and PCAP traffic capture 737 processes

738


This chapter introduces the different diagram sequences to describe the interaction

of TTCN-3 scripts (i.e., TTCN-3 TE), Adapter and TrafficCapture processes.

742 8.1 Interactions between TTCN-3 script and Adapter

The figure below shows the TTCN-3 message exchanges between a TTCN-3 script and the Adapter.

745

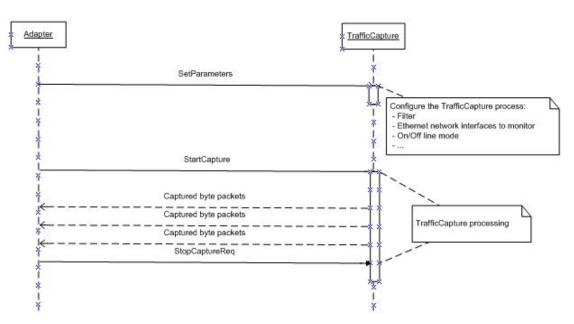
746

Figure 13: Message exchanges between TTCN-3 script and the Adapter

747

The GeneralConfigurationReq message is assumed by the adapter to be always sent prior to starting traffic capture. Parameters of this message are discussed in section 5.2.2.

SetFilterReq can be sent at any time. Filters will be combined until the
StartCaptureReq is received. Any SetFilterReq sent after a StartCaptureReq is ignored
until a StopCaptureRequest is received.


Each captured byte packet message includes a complete captured protocol message. Note that these messages are pure data and are not considered as adapter configuration messages, i.e., they are not in any way encoded by the adapter.

TTCN-3 IOT Adapter Design document

8.2 Interaction between the Adapter and the traffic capture process

The figure below shows the message exchanges between Adapter and TrafficCapture processes. In order to be able to bind the listening socket the TrafficCapture process needs to be statically configured with an IP address and port number to listen to and started as a separate executable.

763

764

Figure 14: Message exchanges between TTCN-3 script and the Adapter

A MergeRequest may be sent to merge a list of files prior to the OpenDeviceRequest. The SetParameters can be used after the OpenDeviceRequest to communicate filter criteria by the adapter (i.e., the combination of filters requested by all test components). The Captured byte packets are in case of the PCAP traffic capture individual Ethernet frames.

Note that the PCAP capture process does not guarantee the presence of complete, e.g., SIP message payolads, within a single Ethernet frame. Payloads may be distributed across multiple frame, e.g., due to IP and/or TCP fragmentation.

Note that all of this communication is transparent to the test system user.

765 9 Class diagram of the Adapter component

766	
767	The Adapter component is built on two main classes:
768	1. The UpperTestAdapter class provides the implementation for the GUI
769	upper test adapter
770	2. The LowerTestAdapter class provides the implementation of captured
771	traffic processing like isolation and dispatching of protocol messages to
772	the correct TTCN-3 components
773	

The Figure 15 shows the class architecture of the Adapter component.

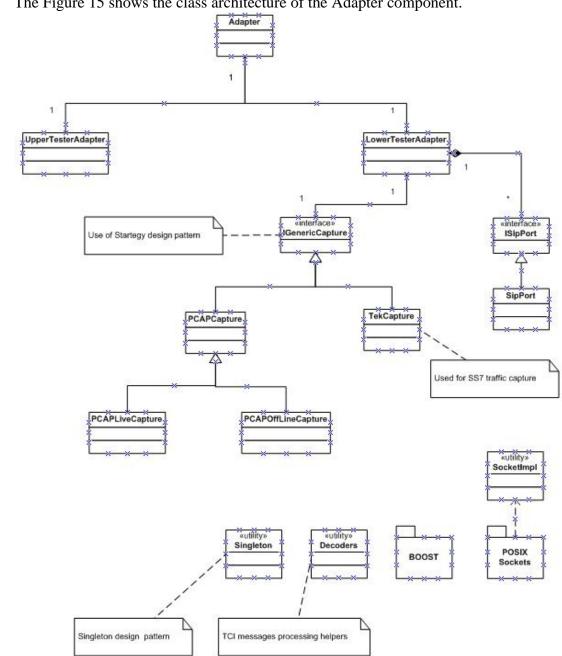


Figure 15: Adapter class diagram

775

9.1 LowerTestAdapter class description

778 TODO: To be continued by Alexendre779

780 9.2 UpperTestAdapter class description

- 781 TODO: To be continued by Yann
- 782
- TTCN-3 IOT Adapter Design document

10 August 2010 Release

783 9.3 Traffic capture related classes description

- 784 TODO: To be continued by Tomas
- 785

786 9.4 Helpers classes description

787 9.4.1 TTCN-3 messages decoding helpers

This class provides some helpers methods to decode messages into adapter internal data structures. Encoding rules and examples are shown in section 5.2.2.1.

790

Note that the Codec for encoding configuration TTCN-3 messages like
GeneralConfigurationReq or decoding messages like GeneralConfigurationRsp in the
TTCN-3 TE are described into the Codec - Design document_draft.doc

794

795 9.4.2 Socket implementation

The communication between the Adapter and the TrafficCapture processes uses a
POSIX socket implementation. The class Socket provides a common implementation
for all Adapter development.

799

800 9.4.3 Log framework

801 TODO: To be continued

802

803 9.4.4 BOOST framework

804 Boost is a free library which is aimed at providing quality software components to 805 developers, whilst using the styles of the Standard Template Library. Some of the 806 components within the library may be put forward as future extensions to the 807 Standard Library.

808

Please refer to the references [BOOST] for a full documentation of the Boostframework.

811

812 9.5 Common development rules

813 This chapter provides a list of common usage in the Adapter development process:

- All the code shall be properly documented (principles, classes, methods, declarations...)
 - 'Doxygen' style comments are used for code documentation
 - For threading, boost with static method has been selected over class thread
- 817 818

814

815

816

820 10 Implementation details

821

This chapter introduces the development details of the different Adapter software
components.

825 10.1 LowerTest component

826 To be continued by Alexendre

827

828 10.2 UpperTest component

829

830 10.2.1 TTCN-3 messages execution

This chapter shows the different implementations of the TTCN-3 messagessupported by TTCN-3 components EutTrigger and EutConfiguration.

833

834 10.2.1.1 Automate equipment operation

This automation of equipment operation commands is vendor specific. However, a basic component, quickly customizable for each vendor, could be developed and integrated into the current software architecture.

838

839 10.2.1.2 Human friendly GUI

This kind of implementation is used when there is no way to automate equipment operation. In this case, equipment operation commands and parameters are presented a graphical application to guide a human equipment user in the operation of equipment. The messages to be displayed are stored in an XML file, one message per operation. This file can be upgraded in real time. This upgrade includes:

- 845 846
- Modifying existing messages
- Adding new TTCN-3 messages support
- 847

848 10.2.2 Sequences diagrams

- 849 To be continued by yann
- 850

851 10.2.3 Class diagrams

The figure below describes the static architecture of the upper test adapter. It manages the equipment operation message port.

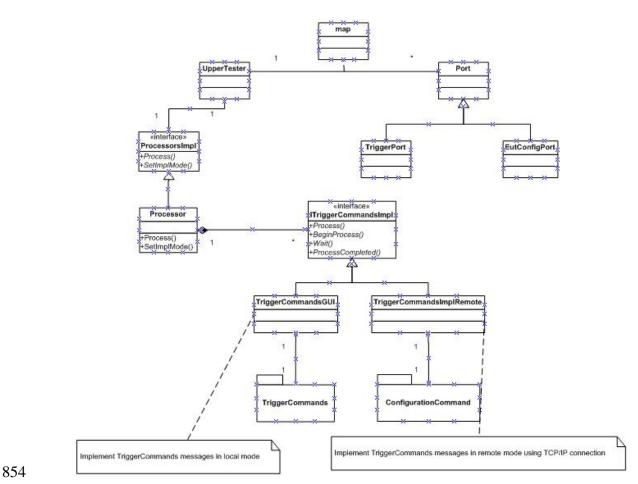


Figure 16: Class diagram of the upper test adapter

856 10.2.4 Human friendly GUI

857 To be continued by Yann

858

859

860 10.3 TrafficCapture component

TrafficCapture is a component of the system adapter which takes care of capturing traffic from a network adapter. For correct functionality, it requires a pcap driver to be installed. It works as a standalone process communicating with the LowerTest component using the TCP/IP protocol. In this communication, TrafficCapture works as a server.

866 10.3.1 Usage

When launched, the application starts listening on a specified port and waits for a
connection attempt from the LowerTest component. The port number can be specified
by the -p command line argument. If no port number is supplied this way,
TrafficCapture uses port 5501.

871

After LowerTest becomes connected, it sends several requests to initiate traffic
 capture according to requirements specified in a TTCN-3 test case. TrafficCapture
 TTCN-3 IOT Adapter Design document
 10 August 2010 Release

0.6 DRAFT Page - 26 processes these request and replies to them returning a success code. If no errors
occur during this procedure, TrafficCapture starts capturing frames and sending them
to LowerTest for further processing.

877

B78 During the test case, LowerTest can request to interrupt and resume capture.
B79 When the test case is over, LowerTest closes TCP/IP connection and TrafficCapture
B80 returns to the initial mode, waiting for new connection requests.

881

TrafficCapture TCP/IP interface doesn't contain any command for ending the
application. It can be stopped manually by pressing <ctrl-c>.

For debugging purposes, the application output can be customised using the following command line arguments:

887		
888	-Linfo	information messages are displayed
889	-Lerr	errors are displayed
890	-Lwarn	warnings are displayed
891	-Ldebug	debugging information are displayed
892	-Lcapt	capturing information are displayed
893	-Lall	all messages are displayed
894	-Lnone	no messages are displayed are displayed

895

896 With the exception of last two switches, all other logging parameters can be 897 combined.

898 10.3.2 Architecture

The core object of the application is a singleton TcpipServer instance. This instance opens a listening socket and accepts incoming connections. For all established connections, a separate ConnectionController is created.

902

903 The controller object runs in an own thread and processes incoming messages 904 from the client. It passes the received binary data to a TrafficCaptureMessageFactory 905 singleton. This factory object tries to convert the data to a message instance. All 906 message instances generated by the factory are derived from a TrafficCaptureMessage 907 class.

908 The generated message instance is later analysed by the controller and an 909 appropriate action is concerning a capture device is taken (creating, starting, stopping 910 etc.)

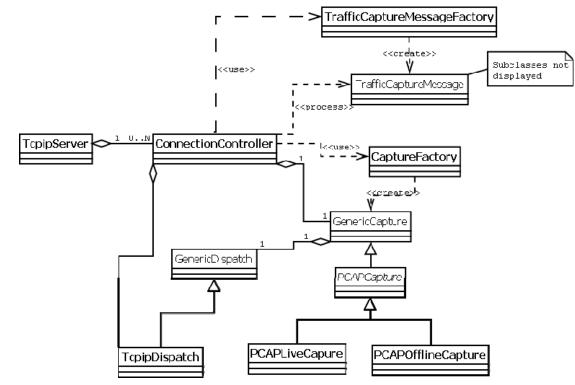


Figure 17: TrafficCapture Class Diagram

912 10.3.3 Functional Specification

911

All messages used in the communication with LowerTest are displayed in the
Figure 18. This sequence diagram displays a typical scenario for a whole capture
session. Individual use cases are described in detail in the following paragraphs.

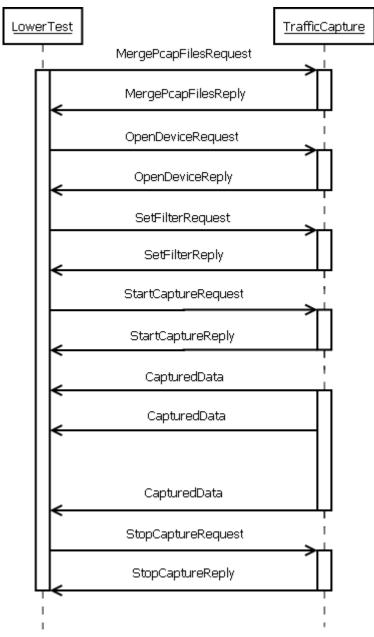


Figure 18: Sequence diagram of typical TrafficCapture session

917 10.3.3.1 UC 01: File Merging

Precondition	TCP/IP connection established	
Description	LowerTest sends a request (MergePcapFilesRequest) to merge two or more pcap files. TrafficCapture performs the operation, using an external tool – mergecap from the Wireshark package and send the result back to LowerTest (MergePcapFilesReply message).	
Success	Merge file is created. LowerTest can get a path to the file from the reply message.	
Exceptions	In case of any exception, the reply message success field is set to false and the path to the merge file is empty. Possible causes are as follows: 1. Invalid path to the mergecap tool	

TTCN-3 IOT Adapter Design document

2.	Invalid path to the directory where the merge file should be created
3.	Merge file already exists and it is not possible to overwrite it
4.	Source files are not found

919 10.3.3.2 UC 02: Opening Device

Precondition	TCP/IP connection established
	In case of offline approach using multiple files, the files must be
	merged (UC 01: File Merging)
Description	LowerTest sends a request (OpenDeviceRequest) to prepare a
	capturing device. TrafficCapture creates the device using a factory
	approach and initialises it. The of operation result is sent back to
	LowerTest in a OpenDeviceReply message.
Success	Capturing device is ready and packet capturing can be started.
Exceptions	There are two different result codes indicating an error. If the result is a partial success, TrafficCapture detected an error, but the device is still capable of data capture at least from one source. If the result is a complete failure, capture cannot be started. The main causes of error are as follows:
	 Invalid format of parameter describing capturing device (incorrect network adapter, pcap file missing etc.) Pcap driver not installed
	3. Invalid/not supported device type requested

920 10.3.3.3 UC 03: Setting Filter

Precondition	Capturing device ready (UC 02: Opening Device)	
Description	LowerTest sends a request (SetFilterRequest) to set a filter for the capturing device. TrafficCapture applies the filter to the device overwriting the previous filter and sends back the operation result in a SetFilterReply message.	
Success	Filter applied to capturing device	
Exceptions	 Capturing device not initialised yet Invalid filter format 	

921 10.3.3.4 UC 04: Starting Capture

Precondition	Capturing device ready (UC 02: Opening Device)		
Description	LowerTest sends a request (StartCaptureRequest) to start capture.		
	TrafficCapture replies with StartCaptureReply and starts sending		
	CapturedData indication messages to LowerTest. These messages		
	contain captured frames.		
Success	Captured packets are being sent to LowerTest		
Exceptions	1. Capturing device not initialised yet		

922 10.3.3.5 UC 05: Stopping Capture

Precondition	Packet capture started (UC 04: Starting Capture)
Description	LowerTest sends a request (StopCaptureRequest) to stop frame

TTCN-3 IOT Adapter Design document

10 August 2010 Release

	capture. TrafficCapture stops sending CaptureData indications and replies with StopCaptureReply.	
Success	Captured frames are no longer sent to LowerTest. Notice that the capturing device is still in initialised state, so it is possible to restart capture.	
Exceptions	1. Capturing device not initialised yet	

924 10.3.4 Compilation

The application is written in C++. It can be compiled with VisualStudio or gcc
(tested with cygwin and MinGW version). The application uses two external libraries:
pcap and boost. In case of compilation for Windows platform, Winsock 2 library is
required as well.

929 **11 Testing of Test Adapter**

930

935

936

937

938

940

In order to validate the Adapter functionalities and to provide a tool for regression
tests, the adapter development provides a test suite named TestExecution, written in
TTCN-3.

- 934 This test suite covers the following functionalities:
 - Merge PCAP file tests
 - General configuration message processing, including on-line vs. off-line mode...)
 - EUTs IP interface settings tests
- PCAP Filtering tests
 - Start/Stop capture operations
 - Traffic capture monitoring
- 941 942

Note that this test suite is located in to the directory "STF 370/adapter/validation".
The directory "STF 370/adapter/MM" provides the test suite solution for MMAGIC
application.

946

947 **12SVN repositories**

948

949 The adapter sources are archived into STF370 project, at the following location:
 950 <u>svn+ssh://vcs.etsi.org/TTCN3/ATS/IMS_IOT/trunk</u>.

- 951
- 952 Note that the adapter project depends also of t3devkit library, located here:
 953 <u>svn+ssh://scm.gforge.inria.fr/svn/t3devkit/t3devkit/branches/stf370/t3devkit</u>
- 954

955 13 Development tools

- 956
- 957 The adapter project uses the external libraries described below:

958	• BOOST: two versions are used:
959	• The version provided by CYGWIN (boost-1_33_1). It's used by
960	the t3devkit toolkit. For more details, please refer to the installation
961	procedure
962	• The latest version (currently boost_1_39_0), located here:
963	http://www.boost.org/doc/libs/1_39_1/. It's used by the
964	TrafficCapture component
965	• WinPcap 4.0.2 developer's pack downloaded from
966	http://www.winpcap.org/devel.htm. It's used by the TrafficCapture
967	component
968	

14References 969

970	
971	[Fwk] ETSI EG xxx xxx: "Methods for Testing and Specification (MTS);
972	Automated Interoperability Testing; Methodology and Framework ".
973	[IMSarch] ETSI TR 1xx xxx, "Methods for Testing and Specification (MTS);
974	Automated Interoperability Testing; Specific Architectures".
975	[Core] ETSI ES 201 873-1 V3.4.1 (2008-09): "Methods for Testing and
976	Specification (MTS); The Testing and Test Control Notation version 3; Part 1:
977	TTCN-3 Core Language".
978	[TRI] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The
979	Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface
980	(TRI)"
981	[TCI] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The
982	Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)"
983	[Codec] - Codec - Design document_draft.doc
984	[t3devkit] - Official t3devket framework reference
985	http://www.irisa.fr/tipi/wiki/doku.php/t3devkit
986	[BOOST] – Official BOOST framework reference
987	http://www.boost.org/doc/libs/1_39_0/libs/libraries.htm
988	

15 Revision History 989

990

6 July 2009	0.1	Document creation / Initial draft
8 July 2009	0.2	First internal review
9 July 2009	0.3	Second internal review
22 July 2009	0.4	Document review by Stephan Schulz
29 July 2009	0.6	Major revision by Stephan Schulz